Physics for Scientists and Engineers with Modern Physics
Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN: 9781337553292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 20, Problem 40AP

(a)

To determine

The molar specific heat at constant volume if the molecules are linear.

(b)

To determine

The molar specific heat at constant volume if the molecules are nonlinear.

(c)

To determine

The high temperature molar specific heat at constant volume for a triatomic ideal gas of linear molecules.

(d)

To determine

The high temperature molar specific heat at constant volume for a triatomic ideal gas of nonlinear molecules.

(e)

To determine

The way by which the specific heat data is used to determine whether a triatomic molecule is linear or non linear and check whether the data in Table 20.2 is sufficient to make this determination.

Blurred answer
Students have asked these similar questions
Consider 1.5 mol of pure nitrogen gas N2 which we will treat as a diatomic ideal gas. From 100 K to 1000 K, the gas has three translational and two rotational degrees of freedom. Above 1000 K, there are two additional vibrational degrees of freedom. The molar mass of N2 is 0.028 kg/mol. a. If the nitrogen molecules have an rms translational molecular speed of 511 m/s, what is the temperature of the gas? b. What is the internal energy U of the nitrogen gas at the temperature from part a? c. If the nitrogen gas has a pressure of 1.2 atm, what volume (in liters) does it occupy at the temperature from part a? d How much heat would be required to raise the temperature of the gas from 1500 K to 1800 K, at a constant volume? Remember that vibrational degrees of freedom are active at these temperatures.
You measure the average free path λ and the average collision time τ of the molecules of a diatomic gas of molecular mass 6.00 × 10-²⁵ kg and radius r = 1.0 x 10-¹⁰ m. From these microscopic data can we obtain macroscopic properties such as temperature T and pressure P? If so, consider λ = 4.32 x 10-⁸ m and τ = 3.00 x 10-¹⁰ s and calculate T and P. indicate the correct answer: 1- Not possible2- Yes, T =150 K and P ~ 2.04 atm.3- Yes, T = 150 K and P ~ 4.08 atm.4- Yes, T = 300 K and P ~ 4.08 atm.5- Yes, T = 300 K and P ~ 5.32 atm6- Yes, T = 400 K and P ~ 4.08 atm.7- Yes, T = 400 K and P ~ 5.32 atm.   obs.:  If necessary, consider: R = 8.314 J/mol∙K1 cal = 4.19 Jkb =1,38 x 10⁻²³ m² kg s⁻² K⁻¹
For this question there could be one or MULTIPLE answers, Choose the best Match/Matches. For a monatomic ideal gas in thermal equilibrium near room temperature,   a. U = 3/2 NkT.   b. U = 5/2 NkT.   c. degrees of freedom include translational and rotational motions.   d. degrees of freedom include translational, rotational, and vibrational motions.   e. U = 5/2 pV.   f. U = 3/2 pV. Explain work please.

Chapter 20 Solutions

Physics for Scientists and Engineers with Modern Physics

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax