Physics: for Science.. With Modern. -Update (Looseleaf)
Physics: for Science.. With Modern. -Update (Looseleaf)
9th Edition
ISBN: 9781305864566
Author: SERWAY
Publisher: CENGAGE L
bartleby

Videos

Question
Book Icon
Chapter 20, Problem 81CP

(a)

To determine

The speed of rise of the piston when the water begins boiling.

(a)

Expert Solution
Check Mark

Answer to Problem 81CP

The speed of rise of the piston when the water begins boiling is 4.19 mm/s.

Explanation of Solution

A piston-cylinder apparatus of cylinder radius r=7.50 cm and piston mass of m=3.00 kg sits on the surface of water at the bottom of the cylinder of 2.00 kg at temperature just below 100.0°C. Now, an electric heater in the cylinder base is turned on and it transfers energy to the water at the rate of 100 W.

The speed of rise of the piston is the increase in the height h due to the boiling of water and the steam produced in the process. The volume of the steam or gas is the area A of the cylinder times the height h

    v = dhdt = ddt(VA)

Using ideal gas law, PV=nRT in the above equation and solving

  v = 1Addt(nRTP)

  v= RTPAdndt                                                                       (I)

Here, PA is the force applied by the gas on the piston, v is the volume of the gas, n is the number of moles, T is the temperature and R is the ideal gas constant.

Write the formula for the force when the piston is in equilibrium

  F=P0A+mpg                                                              (II)

Here, P0 is the atmospheric pressure, A is the area, mp is the mass of the piston and g is the acceleration due to gravity.

Write the formula to find the number of moles

      n=mgMw                                                              (III)

Here, mg is the mass of gas and Mw is the molecular mass.

Write the formula to find energy required to change the phase

    Q=LvΔm                                                                              (IV)

Here, Q is the energy required to change the phase, Lv is the latent heat of vaporization and Δm is the change in mass.

Substitute equation (II) and (III) in (I) and solving

  v = (RTmpg + P0A)ddt(mgMw) = [RT(mpg + P0A)Mw]dmgdt

Substitute equation (IV) in the above equation

v = RT(mpg + P0A)Mwddt(QLv)= RT(mpg + P0A)MwLvdQdt

Here, dQdt is power. Therefore,

v = RT(Power)(mpg + P0A)MwLv

Substitute 8.314 J/molK for R, 373 K for T, 100 for P, 3.00 kg for mp, 9.80 m/s2 for g, 1.013×105 Pa for P0, 7.50 cm for r, 0.0180 for Mw and 2.26×106 J/kg for Lv in the above equation to find the value of v

v = (8.314)(373)(100)[(3.00)(9.80)+(1.013×105)(π)(0.0750)2](0.0180)(2.26×106)   = 4.19 × 103 m/s =4.19 mm/s

Thus, the speed of rise of the piston when the water begins boiling is 4.19 mm/s.

(b)

To determine

The speed of rise of the piston when the water is completely turned into steam.

(b)

Expert Solution
Check Mark

Answer to Problem 81CP

The speed of rise of the piston when the water is completely turned into steam is 12.6 mm/s.

Explanation of Solution

When the water in the cylinder is completely turned into steam, the number of moles will be fixed and the temperature changes as the heater continues to transfer energy to the steam, equation (I) becomes

    v = (nRPA)dTdt v= nR(mpg + P0A)dTdt 

Substitute equation (IV) in the above equation

v = nR(mpg + P0A)ddt(Qmgc) = mgR(mpg + P0A)mgcMwdQdt = R(Power)(mpg + P0A)cMw

Substitute 8.314 J/molK for R, 100 for P, 3.00 kg for mp, 9.80 m/s2 for g, 1.013×105 Pa for P0, 7.50 cm for r, 0.0180 for Mw and 2.26×106 J/kg for Lv in the above equation to find the value of v

v = (8.314)(100)[(3.00)(9.80)+(1.013×105)(π)(0.0750)2](2 010)(0.018 0)    = 0.012 6 m/s =12.6 mm/s

Thus, the speed of rise of the piston when the water is completely turned into steam is 12.6 mm/s.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
An iron block (c = 0.450 J/gºC) is initially at 60.0 ºC. The block is then submerged into 100.0 g of water (c = 4.18 J/gºC) at 25.0 ºC in an insulated container.  The final temperature of the iron block and water upon reaching thermal equilibrium is 26.0 ºC.  What is the mass of the iron block?
A high-pressure gas cylinder contains 50.0 L of toxic gas at a pressure of 1.40×107 N/m2 and a temperature of 25.0ºC . Its valve leaks after the cylinder is dropped. The cylinder is cooled to dry ice temperature (–78.5ºC) to reduce the leak rate and pressure so that it can be safely repaired. (a) What is the final pressure in the tank, assuming a negligible amount of gas leaks while being cooled and that there is no phase change?                (b) What is the final pressure if one-tenth of the gas escapes? (c) To what temperature must the tank be cooled to reduce the pressure to 1.00 atm (assuming the gas does not change phase and that there isno leakage during cooling)?                                                                            (d) Does cooling the tank appear to be a practical solution?
An expandable cylinder has its top connected to a spring with force constant 2.00 x 103 N/m (Fig. P10.64). The cylinder is filled with 5.00 L of gas with the spring relaxed at a pressure of 1.00 atm and a temperature of 20.0°C. (a) If the lid has a cross-sectional area of 0.0100 m2 and negligible mass, how high will the lid rise when the temperature is raised to 250°C? (b) What is the pressure of the gas at 250°C?

Chapter 20 Solutions

Physics: for Science.. With Modern. -Update (Looseleaf)

Ch. 20 - Prob. 6OQCh. 20 - Prob. 7OQCh. 20 - Prob. 8OQCh. 20 - Prob. 9OQCh. 20 - Prob. 10OQCh. 20 - Prob. 11OQCh. 20 - Prob. 12OQCh. 20 - Prob. 13OQCh. 20 - Prob. 14OQCh. 20 - Prob. 15OQCh. 20 - Prob. 1CQCh. 20 - Prob. 2CQCh. 20 - Prob. 3CQCh. 20 - Prob. 4CQCh. 20 - Prob. 5CQCh. 20 - Prob. 6CQCh. 20 - Prob. 7CQCh. 20 - Prob. 8CQCh. 20 - Prob. 9CQCh. 20 - Prob. 10CQCh. 20 - Pioneers stored fruits and vegetables in...Ch. 20 - Prob. 12CQCh. 20 - Prob. 1PCh. 20 - Prob. 2PCh. 20 - Prob. 3PCh. 20 - The highest waterfall in the world is the Salto...Ch. 20 - Prob. 5PCh. 20 - The temperature of a silver bar rises by 10.0C...Ch. 20 - Prob. 7PCh. 20 - Prob. 8PCh. 20 - Prob. 9PCh. 20 - If water with a mass mk at temperature Tk is...Ch. 20 - Prob. 11PCh. 20 - Prob. 12PCh. 20 - Prob. 13PCh. 20 - Prob. 14PCh. 20 - Prob. 15PCh. 20 - Prob. 16PCh. 20 - Prob. 17PCh. 20 - How much energy is required to change a 40.0-g ice...Ch. 20 - Prob. 19PCh. 20 - Prob. 20PCh. 20 - Prob. 22PCh. 20 - In an insulated vessel, 250 g of ice at 0C is...Ch. 20 - Prob. 24PCh. 20 - Prob. 25PCh. 20 - Prob. 26PCh. 20 - One mole of an ideal gas is warmed slowly so that...Ch. 20 - Prob. 28PCh. 20 - Prob. 29PCh. 20 - A gas is taken through the cyclic process...Ch. 20 - Prob. 31PCh. 20 - Prob. 32PCh. 20 - A thermodynamic system undergoes a process in...Ch. 20 - Prob. 34PCh. 20 - A 2.00-mol sample of helium gas initially at 300...Ch. 20 - (a) How much work is done on the steam when 1.00...Ch. 20 - Prob. 37PCh. 20 - Prob. 38PCh. 20 - A 1.00-kg block of aluminum is warmed at...Ch. 20 - Prob. 40PCh. 20 - Prob. 41PCh. 20 - Prob. 42PCh. 20 - Prob. 43PCh. 20 - A concrete slab is 12.0 cm thick and has an area...Ch. 20 - Prob. 45PCh. 20 - Prob. 46PCh. 20 - Prob. 47PCh. 20 - Prob. 48PCh. 20 - Two lightbulbs have cylindrical filaments much...Ch. 20 - Prob. 50PCh. 20 - Prob. 51PCh. 20 - Prob. 52PCh. 20 - (a) Calculate the R-value of a thermal window made...Ch. 20 - Prob. 54PCh. 20 - Prob. 55PCh. 20 - Prob. 56PCh. 20 - Prob. 57PCh. 20 - Prob. 58APCh. 20 - Gas in a container is at a pressure of 1.50 atm...Ch. 20 - Prob. 60APCh. 20 - Prob. 61APCh. 20 - Prob. 62APCh. 20 - Prob. 63APCh. 20 - Prob. 64APCh. 20 - Review. Following a collision between a large...Ch. 20 - An ice-cube tray is filled with 75.0 g of water....Ch. 20 - Prob. 67APCh. 20 - Prob. 68APCh. 20 - An iron plate is held against an iron wheel so...Ch. 20 - Prob. 70APCh. 20 - Prob. 71APCh. 20 - One mole of an ideal gas is contained in a...Ch. 20 - Prob. 73APCh. 20 - Prob. 74APCh. 20 - Prob. 75APCh. 20 - Prob. 76APCh. 20 - Prob. 77APCh. 20 - Prob. 78APCh. 20 - Prob. 79APCh. 20 - Prob. 80APCh. 20 - Prob. 81CPCh. 20 - Prob. 82CPCh. 20 - Prob. 83CPCh. 20 - Prob. 84CP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Thermodynamics: Crash Course Physics #23; Author: Crash Course;https://www.youtube.com/watch?v=4i1MUWJoI0U;License: Standard YouTube License, CC-BY