BuyFindarrow_forward

Finite Mathematics and Applied Cal...

7th Edition
Stefan Waner + 1 other
ISBN: 9781337274203

Solutions

Chapter
Section
BuyFindarrow_forward

Finite Mathematics and Applied Cal...

7th Edition
Stefan Waner + 1 other
ISBN: 9781337274203
Textbook Problem

In Exercises 11-16, choose the logistic function that best approximates the given curve.

images

(A) f ( x ) = 8 1 + 7 ( 2 ) x

(B) f ( x ) = 8 1 + 3 ( 2 ) x

(C) f ( x ) = 6 1 + 11 ( 5 ) x

To determine

The correct logistic function f

from the given choices for the following curve,

images

(A). f(x)=81+7(2)x

(B). f(x)=81+3(2)x

(C). f(x)=61+11(5)x

Explanation

Given Information:

The provided curve is,

The given choices for the correct logistic function are,

(A). f(x)=81+7(2)x

(B). f(x)=81+3(2)x

(C). f(x)=61+11(5)x

The form of the logistic function is:

f(x)=N1+A(bx)

Where constants N,A

and b

are non-zero (A,bare positive and b1).

There are certain properties of the curve represented by the logistic curve, y=N1+A(bx)

1.

The graph of the function formed is S-shaped which is formed by sandwiching between the horizontal lines y=0 and y=N, which means the limiting value of the function is N.

2.

If b>1, graph rises, if b<1, the graph falls.

Now, the provided curve is,

It is clear from the curve that the function f

has limiting value 8, which means the value of constant N=8

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started
Sect-2.1 P-11ESect-2.1 P-12ESect-2.1 P-13ESect-2.1 P-14ESect-2.1 P-15ESect-2.1 P-16ESect-2.1 P-17ESect-2.1 P-18ESect-2.1 P-19ESect-2.1 P-20ESect-2.1 P-21ESect-2.1 P-22ESect-2.1 P-23ESect-2.1 P-24ESect-2.1 P-25ESect-2.1 P-26ESect-2.1 P-27ESect-2.1 P-28ESect-2.1 P-29ESect-2.1 P-30ESect-2.1 P-31ESect-2.1 P-32ESect-2.1 P-33ESect-2.1 P-34ESect-2.1 P-35ESect-2.1 P-36ESect-2.1 P-37ESect-2.1 P-38ESect-2.1 P-39ESect-2.1 P-40ESect-2.1 P-41ESect-2.1 P-42ESect-2.1 P-43ESect-2.1 P-44ESect-2.1 P-45ESect-2.1 P-46ESect-2.1 P-47ESect-2.1 P-48ESect-2.1 P-49ESect-2.1 P-50ESect-2.1 P-51ESect-2.1 P-52ESect-2.1 P-53ESect-2.1 P-54ESect-2.1 P-55ESect-2.1 P-56ESect-2.1 P-57ESect-2.1 P-58ESect-2.1 P-59ESect-2.1 P-60ESect-2.1 P-61ESect-2.1 P-62ESect-2.2 P-1ESect-2.2 P-2ESect-2.2 P-3ESect-2.2 P-4ESect-2.2 P-5ESect-2.2 P-6ESect-2.2 P-7ESect-2.2 P-8ESect-2.2 P-9ESect-2.2 P-10ESect-2.2 P-11ESect-2.2 P-12ESect-2.2 P-13ESect-2.2 P-14ESect-2.2 P-15ESect-2.2 P-16ESect-2.2 P-17ESect-2.2 P-18ESect-2.2 P-19ESect-2.2 P-20ESect-2.2 P-21ESect-2.2 P-22ESect-2.2 P-23ESect-2.2 P-24ESect-2.2 P-25ESect-2.2 P-26ESect-2.2 P-27ESect-2.2 P-28ESect-2.2 P-29ESect-2.2 P-30ESect-2.2 P-31ESect-2.2 P-32ESect-2.2 P-33ESect-2.2 P-34ESect-2.2 P-35ESect-2.2 P-36ESect-2.2 P-37ESect-2.2 P-38ESect-2.2 P-39ESect-2.2 P-40ESect-2.2 P-41ESect-2.2 P-42ESect-2.2 P-43ESect-2.2 P-44ESect-2.2 P-45ESect-2.2 P-46ESect-2.2 P-47ESect-2.2 P-48ESect-2.2 P-49ESect-2.2 P-50ESect-2.2 P-51ESect-2.2 P-52ESect-2.2 P-53ESect-2.2 P-54ESect-2.2 P-55ESect-2.2 P-56ESect-2.2 P-57ESect-2.2 P-58ESect-2.2 P-59ESect-2.2 P-60ESect-2.2 P-61ESect-2.2 P-62ESect-2.2 P-63ESect-2.2 P-64ESect-2.2 P-65ESect-2.2 P-66ESect-2.2 P-67ESect-2.2 P-68ESect-2.2 P-69ESect-2.2 P-70ESect-2.2 P-71ESect-2.2 P-72ESect-2.2 P-73ESect-2.2 P-74ESect-2.2 P-75ESect-2.2 P-76ESect-2.2 P-77ESect-2.2 P-78ESect-2.2 P-79ESect-2.2 P-80ESect-2.2 P-81ESect-2.2 P-82ESect-2.2 P-83ESect-2.2 P-84ESect-2.2 P-85ESect-2.2 P-86ESect-2.2 P-87ESect-2.2 P-88ESect-2.2 P-89ESect-2.2 P-90ESect-2.2 P-91ESect-2.2 P-92ESect-2.2 P-93ESect-2.2 P-94ESect-2.2 P-95ESect-2.2 P-96ESect-2.2 P-97ESect-2.2 P-98ESect-2.2 P-99ESect-2.2 P-100ESect-2.2 P-101ESect-2.2 P-102ESect-2.2 P-103ESect-2.2 P-104ESect-2.2 P-105ESect-2.2 P-106ESect-2.2 P-107ESect-2.2 P-108ESect-2.2 P-109ESect-2.2 P-110ESect-2.3 P-1ESect-2.3 P-2ESect-2.3 P-3ESect-2.3 P-4ESect-2.3 P-5ESect-2.3 P-6ESect-2.3 P-7ESect-2.3 P-8ESect-2.3 P-9ESect-2.3 P-10ESect-2.3 P-11ESect-2.3 P-12ESect-2.3 P-13ESect-2.3 P-14ESect-2.3 P-15ESect-2.3 P-16ESect-2.3 P-17ESect-2.3 P-18ESect-2.3 P-19ESect-2.3 P-20ESect-2.3 P-21ESect-2.3 P-22ESect-2.3 P-23ESect-2.3 P-24ESect-2.3 P-25ESect-2.3 P-26ESect-2.3 P-27ESect-2.3 P-28ESect-2.3 P-29ESect-2.3 P-30ESect-2.3 P-31ESect-2.3 P-32ESect-2.3 P-33ESect-2.3 P-34ESect-2.3 P-35ESect-2.3 P-36ESect-2.3 P-37ESect-2.3 P-38ESect-2.3 P-39ESect-2.3 P-40ESect-2.3 P-41ESect-2.3 P-42ESect-2.3 P-43ESect-2.3 P-44ESect-2.3 P-45ESect-2.3 P-46ESect-2.3 P-47ESect-2.3 P-48ESect-2.3 P-49ESect-2.3 P-50ESect-2.3 P-51ESect-2.3 P-52ESect-2.3 P-53ESect-2.3 P-54ESect-2.3 P-55ESect-2.3 P-56ESect-2.3 P-57ESect-2.3 P-58ESect-2.3 P-59ESect-2.3 P-60ESect-2.3 P-61ESect-2.3 P-62ESect-2.3 P-63ESect-2.3 P-64ESect-2.3 P-65ESect-2.3 P-66ESect-2.3 P-67ESect-2.3 P-68ESect-2.3 P-69ESect-2.3 P-70ESect-2.3 P-71ESect-2.3 P-72ESect-2.3 P-73ESect-2.3 P-74ESect-2.3 P-75ESect-2.3 P-76ESect-2.3 P-77ESect-2.4 P-1ESect-2.4 P-2ESect-2.4 P-3ESect-2.4 P-4ESect-2.4 P-5ESect-2.4 P-6ESect-2.4 P-7ESect-2.4 P-8ESect-2.4 P-9ESect-2.4 P-10ESect-2.4 P-11ESect-2.4 P-12ESect-2.4 P-13ESect-2.4 P-14ESect-2.4 P-15ESect-2.4 P-16ESect-2.4 P-17ESect-2.4 P-18ESect-2.4 P-19ESect-2.4 P-20ESect-2.4 P-21ESect-2.4 P-22ESect-2.4 P-23ESect-2.4 P-24ESect-2.4 P-25ESect-2.4 P-26ESect-2.4 P-27ESect-2.4 P-28ESect-2.4 P-29ESect-2.4 P-30ESect-2.4 P-31ESect-2.4 P-33ESect-2.4 P-34ESect-2.4 P-35ESect-2.4 P-36ESect-2.4 P-37ESect-2.4 P-38ESect-2.4 P-39ESect-2.4 P-40ESect-2.4 P-41ESect-2.4 P-42ESect-2.4 P-43ESect-2.4 P-44ECh-2 P-1RECh-2 P-2RECh-2 P-3RECh-2 P-4RECh-2 P-5RECh-2 P-6RECh-2 P-7RECh-2 P-8RECh-2 P-9RECh-2 P-10RECh-2 P-11RECh-2 P-12RECh-2 P-13RECh-2 P-14RECh-2 P-15RECh-2 P-16RECh-2 P-17RECh-2 P-18RECh-2 P-19RECh-2 P-20RECh-2 P-21RECh-2 P-22RECh-2 P-23RECh-2 P-24RECh-2 P-25RECh-2 P-26RECh-2 P-27RECh-2 P-28RECh-2 P-29RECh-2 P-30RECh-2 P-31RECh-2 P-32RECh-2 P-33RECh-2 P-35RECh-2 P-36RECh-2 P-37RECh-2 P-38RECh-2 P-39RECh-2 P-40RECh-2 P-41RECh-2 P-42RECh-2 P-43RECh-2 P-44RECh-2 P-45RECh-2 P-50RE

Additional Math Solutions

Find more solutions based on key concepts

Show solutions add

Find the limit or show that it does not exist. limxx+3x24x1

Single Variable Calculus: Early Transcendentals, Volume I

In Exercises 1-6, simplify the expression. 27+12

Calculus: An Applied Approach (MindTap Course List)

In Exercises 4562, find the values of x that satisfy the inequality (inequalities). 49. 6 x 2 4

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

Prove that limx0x4cos2x=0.

Single Variable Calculus

In problems 37-44, perform the indicated operations and simplify. 38.

Mathematical Applications for the Management, Life, and Social Sciences

True or False: is a convergent series.

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th