Numerical Methods For Engineers, 7 Ed
Numerical Methods For Engineers, 7 Ed
7th Edition
ISBN: 9789352602131
Author: Canale Chapra
Publisher: MCGRAW-HILL HIGHER EDUCATION
bartleby

Videos

Textbook Question
Book Icon
Chapter 24, Problem 53P

For fluid flow over a surface, the heat flux to the surface can be computed as

J = k d T d y

Where J = heat flux  ( W/m 2 ) , k = thermal conductivity  ( W/m K ) , T = temperature  ( K ) , and y = distance normal to the surface (m). The following measurements are made for air flowing over a flat plate that is 200 cm long and 50 cm wide:

y, cm 0 1 3 5
T, K 900 480 270 200

If k = 0.028 J/s m K , (a) determine the flux at the surface and (b) the heat transfer in watts. Note that 1J = s .

Blurred answer
Students have asked these similar questions
The drag force, Fp, acting on an immersed body by a moving fluid can be calculated as PU? 2 where C, is the drag coefficient, A is the projected area of the body on a plane normal to the Fp = CpA flow, p is the mass density of the fluid, and U is the undisturbed velocity of the fluid. Suppose Cp, A, and p are known constants of values 0.6, 10 ft2, and 1.94 slug/ft, respec- tively. U is a lognormal random variable with parameters hy and Sy. Determine the distribution of Fp-
A skydiver weighing 120kg drops vertically from a jet flying at 4.000m. Assume the force due to air resistance to be proportional to the velocity of the skydiver, with the proportionality constant b1= 20 N⋅sec/m before the cute is opened, and b2= 100 N⋅sec/m after the chute is opened. If the skydiver opens the chute after 60 seconds of free fall, find:  a. The total amount of time elapsed between dropping out of the plane and landing.  b. The velocity of the skydiver at the instant of landing on the ground.
A sheet of water of uniform thickness (h = 0.03 m) flows from the device shown in the figure below. The water enters vertically through the inlet pipe and exits horizontally with a speed that varies linearly from 0 to 11 m/s along the 0.2-m length of the slit. Determine the y component of anchoring force necessary to hold this device stationary. FAY = 0 m/s- i 0.2m 0.03m N 11m/s

Chapter 24 Solutions

Numerical Methods For Engineers, 7 Ed

Ch. 24 - One of your colleagues has designed a new...Ch. 24 - Video an giography is used to measure blood flow...Ch. 24 - 24.14 Perform the same computation as in Sec....Ch. 24 - Perform the same computation as in Sec. 24.2, but...Ch. 24 - 24.16 As in Sec. 24.2, compute F using the...Ch. 24 - Stream cross-sectional areas (A) are required for...Ch. 24 - 24.18 As described in Prob. 24.17, the...Ch. 24 - 24.21 A transportation engineering study requires...Ch. 24 - 24.22 A wind force distributed against the side of...Ch. 24 - 24.23 Water exerts pressure on the upstream ...Ch. 24 - 24.24 To estimate the size of a new dam, you have...Ch. 24 - The data listed in the following table gives...Ch. 24 - The heat flux q is the quantity of heat flowing...Ch. 24 - 24.27 The horizontal surface area of a lake at a...Ch. 24 - 24.28 Perform the same computation as in Sec....Ch. 24 - 24.29 Repeat Prob. 24.28, but use five...Ch. 24 - Repeat Prob. 24.28, but use Romberg integration to...Ch. 24 - Faradays law characterizes the voltage drop across...Ch. 24 - 24.32 Based on Faraday’s law (Prob. 24.31), use...Ch. 24 - Suppose that the current through a resistor is...Ch. 24 - If a capacitor initially holds no charge, the...Ch. 24 - 24.35 Perform the same computation as in Sec....Ch. 24 - 24.36 Repeat Prob. 24.35, but use (a) Simpson’s ...Ch. 24 - 24.37 Compute work as described in Sec. 24.4, but...Ch. 24 - As was done in Sec. 24.4, determine the work...Ch. 24 - 24.39 The work done on an object is equal to the...Ch. 24 - The rate of cooling of a body (Fig. P24.40) can be...Ch. 24 - 24.41 A rod subject to an axial load (Fig....Ch. 24 - If the velocity distribution of a fluid flowing...Ch. 24 - 24.43 Using the following data, calculate the work...Ch. 24 - 24.44 A jet fighter’s position on an aircraft...Ch. 24 - 24.45 Employ the multiple-application Simpson’s...Ch. 24 - The upward velocity of a rocket can be computed by...Ch. 24 - Referring to the data from Problem 20.61, find the...Ch. 24 - Fully developed flow moving through a 40-cm...Ch. 24 - Fully developed flow of a Bingham plasticfluid...Ch. 24 - 24.50 The enthalpy of a real gas is a ...Ch. 24 - Given the data below, find the isothermal work...Ch. 24 - 24.52 The Rosin-Rammler-Bennet (RRB) equation is...Ch. 24 - For fluid flow over a surface, the heat flux to...Ch. 24 - The pressure gradient for laminar flow through a...Ch. 24 - 24.55 Velocity data for air are collected at...
Knowledge Booster
Background pattern image
Advanced Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
College Algebra
Algebra
ISBN:9781337282291
Author:Ron Larson
Publisher:Cengage Learning
Text book image
College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning
Chain Rule dy:dx = dy:du*du:dx; Author: Robert Cappetta;https://www.youtube.com/watch?v=IUYniALwbHs;License: Standard YouTube License, CC-BY
CHAIN RULE Part 1; Author: Btech Maths Hub;https://www.youtube.com/watch?v=TIAw6AJ_5Po;License: Standard YouTube License, CC-BY