Physics: Principles with Applications
Physics: Principles with Applications
6th Edition
ISBN: 9780130606204
Author: Douglas C. Giancoli
Publisher: Prentice Hall
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 25, Problem 50P

Two stars 18 light-years away are barely resolved by a 66-cm (mirror diameter) telescope. How far apart are the stars? Assume λ= 550 nm and that the resolution is limited by diffraction.

Expert Solution & Answer
Check Mark
To determine

The distance between two stars which are barely resolved by the telescope

Answer to Problem 50P

Solution:

The stars are 1.73×1011m apart from each other.

Explanation of Solution

The image of a point object spreads out in the form of a disk due to diffraction effects. Two objects when viewed through a telescope appear to be just resolved, if the central maximum of one of the diffraction pattern of one object just falls on the first minimum of the other. This criterion of resolution is called Rayleigh’s criterion for resolution.

The angular resolution is given by,

θ=(1.22λDrad)

If the stars which are apart by a distance xare at a distance s from the Earth then,

x=sθ

Given:

The diameter of the mirror D=66 cm=0.66 m

Wavelength of the light λ=550 nm=5.50×107m

The distance of the stars from Earth s=18 ly

Formula:

Angular resolution limit due to diffraction is given by,

θ=(1.22λDrad)

The distance between the stars is given by,

x=sθ

Calculation:

Substitute the given values of diameter and wavelength in the expression and calculate the angular resolution.

θ=(1.22λDrad)=(1.22)(5.50×107m)(0.66 m)=1.017×106rad

Calculate the separation of the stars using the expression,

x=sθ=(18 ly)(1.017×106rad)=1.8306×105 ly

Express the distance x in m.

x=1.8306×105 ly×9.46×1015m1 ly=1.73×1011m

Chapter 25 Solutions

Physics: Principles with Applications

Ch. 25 - Prob. 11QCh. 25 - Explain why chromatic aberration occurs for thin...Ch. 25 - Prob. 13QCh. 25 - Prob. 14QCh. 25 - Prob. 15QCh. 25 - Prob. 16QCh. 25 - Prob. 17QCh. 25 - Prob. 18QCh. 25 - Prob. 1PCh. 25 - Prob. 2PCh. 25 - Prob. 3PCh. 25 - Prob. 4PCh. 25 - Prob. 5PCh. 25 - Prob. 6PCh. 25 - If a 135-mm telephoto lens is designed to cover...Ch. 25 - Prob. 8PCh. 25 - Prob. 9PCh. 25 - A person struggles to read by holding a book at...Ch. 25 - Prob. 11PCh. 25 - An eye is corrected by a - 5.50-D lens, 2.0 cm...Ch. 25 - Prob. 13PCh. 25 - Prob. 14PCh. 25 - A person has a far point of 14 cm. What power...Ch. 25 - Prob. 16PCh. 25 - Prob. 17PCh. 25 - Prob. 18PCh. 25 - Prob. 19PCh. 25 - Prob. 20PCh. 25 - Prob. 21PCh. 25 - Prob. 22PCh. 25 - Prob. 23PCh. 25 - Prob. 24PCh. 25 - A magnifying glass with a focal length of 9.2 cm...Ch. 25 - Prob. 26PCh. 25 - Prob. 27PCh. 25 - Prob. 28PCh. 25 - Prob. 29PCh. 25 - A 7.0x binocular has 3.5-cm-focal-length...Ch. 25 - Prob. 31PCh. 25 - 35. (II) An astronomical telescope has its two...Ch. 25 - 36. (II) A Galilean telescope adjusted for a...Ch. 25 - Prob. 34PCh. 25 - Prob. 35PCh. 25 - Prob. 36PCh. 25 - Prob. 37PCh. 25 - Prob. 38PCh. 25 - Prob. 39PCh. 25 - Prob. 40PCh. 25 - Prob. 41PCh. 25 - Prob. 42PCh. 25 - A microscope has a 14.0x eyepiece and a 60.0x...Ch. 25 - Repeat Problem 46 assuming that the final image is...Ch. 25 - Prob. 45PCh. 25 - An achromatic lens is made of two very thin...Ch. 25 - Prob. 47PCh. 25 - Prob. 48PCh. 25 - Prob. 49PCh. 25 - Two stars 18 light-years away are barely resolved...Ch. 25 - Prob. 51PCh. 25 - Prob. 52PCh. 25 - Prob. 53PCh. 25 - Prob. 54PCh. 25 - Prob. 55PCh. 25 - Prob. 56PCh. 25 - Prob. 57PCh. 25 - Prob. 58GPCh. 25 - Prob. 59GPCh. 25 - Prob. 60GPCh. 25 - Prob. 61GPCh. 25 - Prob. 62GPCh. 25 - Prob. 63GPCh. 25 - Prob. 64GPCh. 25 - Prob. 65GPCh. 25 - Prob. 66GPCh. 25 - Prob. 67GPCh. 25 - Prob. 68GPCh. 25 - Prob. 69GPCh. 25 - Prob. 70GPCh. 25 - Prob. 71GPCh. 25 - Prob. 72GPCh. 25 - Prob. 73GPCh. 25 - Prob. 74GP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY