Physics: Principles and Applications -- Pearson e Text Instant Access (Pearson+)
Physics: Principles and Applications -- Pearson e Text Instant Access (Pearson+)
7th Edition
ISBN: 9780137679065
Author: Douglas Giancoli
Publisher: PEARSON+
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 25, Problem 87GP

You want to design a spy satellite to photograph license plate numbers. Assuming it is necessary to resolve points separated by 5 cm with 550-nm light, and that the satellite orbits at a height of 130 km, what minimum lens aperture (diameter) is required?

Blurred answer
Students have asked these similar questions
Estimate the linear separation of two objects on Mars that can just be resolved under ideal conditions by an observer on Earth (a) using the naked eye and (b) using the 200 in. (=5.1 m) Mount Palomar telescope. Use the following data: distance to Mars = 8.0 * 10^7 km, diameter of pupil = 5.0 mm, wavelength of light = 550 nm.
Assume that a spy satellite in orbit carries a telescope that can resolve objects on the ground as small as the width of a car’s license plate. If the satellite is in orbit at 400 kmkm above the earth’s surface (which is typical for orbiting telescopes) and it focuses light of wavelength 500 nmnm , what minimum diameter of the mirror (or objective lens) would be needed (Take the width of a typical license plate to be about 30 cmcm )? Express your answer in centimeters.
An amateur astronomer wants to build a telescope with adiffraction limit that will allow him to see if there are people onthe moons of Jupiter.(a) What diameter mirror is needed to be able to see 1.00 mdetail on a Jovian Moon at a distance of 7.50×108km fromEarth? The wavelength of light averages 600 nm.(b) What is unreasonable about this result?(c) Which assumptions are unreasonable or inconsistent?

Chapter 25 Solutions

Physics: Principles and Applications -- Pearson e Text Instant Access (Pearson+)

Ch. 25 - Prob. 9QCh. 25 - Prob. 10QCh. 25 - Prob. 11QCh. 25 - Prob. 12QCh. 25 - Explain why chromatic aberration occurs for thin...Ch. 25 - Prob. 14QCh. 25 - Prob. 15QCh. 25 - Prob. 16QCh. 25 - Prob. 17QCh. 25 - Prob. 18QCh. 25 - Prob. 19QCh. 25 - Prob. 20QCh. 25 - The image of a nearby object formed by a camera...Ch. 25 - Prob. 2MCQCh. 25 - Prob. 3MCQCh. 25 - Prob. 4MCQCh. 25 - Prob. 5MCQCh. 25 - Prob. 6MCQCh. 25 - Prob. 7MCQCh. 25 - Prob. 8MCQCh. 25 - Prob. 9MCQCh. 25 - Prob. 10MCQCh. 25 - Prob. 11MCQCh. 25 - Prob. 12MCQCh. 25 - Prob. 13MCQCh. 25 - Prob. 1PCh. 25 - Prob. 2PCh. 25 - Prob. 3PCh. 25 - Prob. 4PCh. 25 - Prob. 5PCh. 25 - Prob. 6PCh. 25 - Prob. 7PCh. 25 - Prob. 8PCh. 25 - If a 135-mm telephoto lens is designed to cover...Ch. 25 - Prob. 10PCh. 25 - Prob. 11PCh. 25 - A person struggles to read by holding a book at...Ch. 25 - Prob. 13PCh. 25 - An eye is corrected by a - 5.50-D lens, 2.0 cm...Ch. 25 - Prob. 15PCh. 25 - Prob. 16PCh. 25 - A person has a far point of 14 cm. What power...Ch. 25 - Prob. 18PCh. 25 - Prob. 19PCh. 25 - Prob. 20PCh. 25 - Prob. 21PCh. 25 - Prob. 22PCh. 25 - Prob. 23PCh. 25 - Prob. 24PCh. 25 - Prob. 25PCh. 25 - Prob. 26PCh. 25 - Prob. 27PCh. 25 - A magnifying glass with a focal length of 9.2 cm...Ch. 25 - Prob. 29PCh. 25 - Prob. 30PCh. 25 - Prob. 31PCh. 25 - Prob. 32PCh. 25 - A 7.0x binocular has 3.5-cm-focal-length...Ch. 25 - Prob. 34PCh. 25 - 35. (II) An astronomical telescope has its two...Ch. 25 - 36. (II) A Galilean telescope adjusted for a...Ch. 25 - Prob. 37PCh. 25 - Prob. 38PCh. 25 - Prob. 39PCh. 25 - Prob. 40PCh. 25 - Prob. 41PCh. 25 - Prob. 42PCh. 25 - Prob. 43PCh. 25 - Prob. 44PCh. 25 - Prob. 45PCh. 25 - A microscope has a 14.0x eyepiece and a 60.0x...Ch. 25 - Repeat Problem 46 assuming that the final image is...Ch. 25 - Prob. 48PCh. 25 - The eyepiece of a compound microscope has a focal...Ch. 25 - Prob. 50PCh. 25 - An achromatic lens is made of two very thin...Ch. 25 - Prob. 52PCh. 25 - Prob. 53PCh. 25 - Prob. 54PCh. 25 - Two stars 18 light-years away are barely resolved...Ch. 25 - Prob. 56PCh. 25 - Prob. 57PCh. 25 - Prob. 58PCh. 25 - Prob. 59PCh. 25 - Prob. 60PCh. 25 - Prob. 61PCh. 25 - Prob. 62PCh. 25 - Prob. 63PCh. 25 - Prob. 64GPCh. 25 - Prob. 65GPCh. 25 - Prob. 66GPCh. 25 - Prob. 67GPCh. 25 - Prob. 68GPCh. 25 - Prob. 69GPCh. 25 - Prob. 70GPCh. 25 - Prob. 71GPCh. 25 - Prob. 72GPCh. 25 - Prob. 73GPCh. 25 - Prob. 74GPCh. 25 - Prob. 75GPCh. 25 - Prob. 76GPCh. 25 - Prob. 77GPCh. 25 - Prob. 78GPCh. 25 - Prob. 79GPCh. 25 - Prob. 80GPCh. 25 - Prob. 81GPCh. 25 - Prob. 82GPCh. 25 - Prob. 83GPCh. 25 - Prob. 84GPCh. 25 - Prob. 85GPCh. 25 - Prob. 86GPCh. 25 - You want to design a spy satellite to photograph...Ch. 25 - Given two 12-cm-focal-length lenses, you attempt...Ch. 25 - Prob. 89GP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY