Tutorials in Introductory Physics
Tutorials in Introductory Physics
1st Edition
ISBN: 9780130970695
Author: Peter S. Shaffer, Lillian C. McDermott
Publisher: Addison Wesley
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 25.5, Problem 2TH

Light from a laser ( λ = 633 n m ) is incident on two slits. The resulting graph of relative intensity versus θ is shown at right. (The center of the pattern is at θ = 0 ° .)

Chapter 25.5, Problem 2TH, Light from a laser (=633nm) is incident on two slits. The resulting graph of relative intensity
Calculate the slit width, a, and the distance between the slits, d. Make clear which features of the graph you use to answer.

Blurred answer
Students have asked these similar questions
A narrow beam of light is incident on the left side of the prism shown in the figure below. The prism is a right triangle, with two of its angles measuring 45°. A) The transmitted beam that exits the hypotenuse of the prism makes an angle of ? = 17.5° with the direction of the incident beam. What is the index of refraction of the prism? B) In part (a), we assumed the beam was monochromatic. Consider instead the case where the beam was composed of white light. Because the index of refraction differs for different wavelengths, the white light would be dispersed into constituent colors. Assume the index of refraction for blue wavelengths is 1.01n and for red wavelengths it is 0.99n, where n is the index of refraction found in part (a). What is the angular spread (in degrees) between red and blue light exiting the prism?
A thin beam of white light is directed at a flat sheet of silicate flint glass at an angle of 20° to the surface of the sheet. Due to dispersion in the glass, the beam is spread out in a spectrum as shown in the figure. The refractive index of silicate flint glass versus wavelength is graphed in figure to the right. (a) The rays (A and B) shown in the figure correspond to the extreme wavelengths. Which corresponds to red and which to violet? Explain your reasoning. (b) For what thickness of the glass sheet will the spectrum be 1.0 mm wide, as shown (see Problem 7)? Hint: you must first solve Problem 7 first before doing Problem 8). Answer: 93.5 mm
Two radio antennas separated by d = 270 m, as shown in the figure below, simultaneously broadcast identical signals at the same wavelength. A car travels due north along a straight line at position x = 1,030 m from the center point between the antennas, and its radio receives the signals. Hint: Do not use the small-angle approximation in this problem.   (a) If the car is at the position of the second maximum after that at point O when it has traveled a distance of y = 400 m northward, what is the wavelength of the signals? m(b) How much farther must the car travel from this position to encounter the next minimum in reception? m

Chapter 25 Solutions

Tutorials in Introductory Physics

Ch. 25.1 - Determine the angles for which there will be nodal...Ch. 25.1 - Consider the following incorrect statement...Ch. 25.2 - In the space above the photograph at right,...Ch. 25.2 - The screen is 2.2m from the slits, and the...Ch. 25.2 - Suppose that the width of the right slit were...Ch. 25.2 - The graph of intensity versus angle at right...Ch. 25.3 - The photograph at right illustrates the pattern...Ch. 25.3 - The photograph at right illustrates the pattern...Ch. 25.3 - Consider the original doubleslit pattern from...Ch. 25.3 - Consider the original doubleslit pattern from...Ch. 25.3 - Consider the original doubleslit pattern from...Ch. 25.3 - Prob. 3aTHCh. 25.3 - Monochromatic light from a distant point source...Ch. 25.4 - Light from a distant point source is incident on a...Ch. 25.4 - The graph at right shows the intensity on a...Ch. 25.4 - The graph at right shows the intensity on a...Ch. 25.4 - There is a systematic way of determining the...Ch. 25.4 - There is a systematic way of determining the...Ch. 25.4 - There is a systematic way of determining the...Ch. 25.5 - Monochromatic light from a distant point source is...Ch. 25.5 - Monochromatic light from a distant point source is...Ch. 25.5 - Light from a laser (=633nm) is incident on two...Ch. 25.5 - Monochromatic light from a distant point source is...Ch. 25.5 - Monochromatic light from a distant point source is...Ch. 25.5 - Monochromatic light from a distant point source is...Ch. 25.6 - Recall the situation from tutorial, in which light...Ch. 25.6 - Recall the situation from tutorial, in which light...Ch. 25.6 - A plate of glass (n=1.5) is placed over a flat...Ch. 25.6 - A plate of glass (n=1.5) is placed over a flat...Ch. 25.6 - A plate of glass (n=1.5) is placed over a flat...Ch. 25.7 - Identical beams of light are incident on three...Ch. 25.7 - Prob. 1bTHCh. 25.7 - Unpolarized light of intensity I0 incident on a...Ch. 25.7 - Unpolarized light of intensity I0 incident on a...Ch. 25.7 - Unpolarized light of intensity I0 incident on a...Ch. 25.7 - Unpolarized light of intensity I0 incident on a...Ch. 25.7 - Unpolarized red light is incident on two...Ch. 25.7 - Unpolarized red light is incident on two...Ch. 25.7 - Unpolarized red light is incident on two...Ch. 25.7 - Unpolarized red light is incident on two...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Spectra Interference: Crash Course Physics #40; Author: CrashCourse;https://www.youtube.com/watch?v=-ob7foUzXaY;License: Standard YouTube License, CC-BY