EBK NUMERICAL METHODS FOR ENGINEERS
EBK NUMERICAL METHODS FOR ENGINEERS
7th Edition
ISBN: 8220100254147
Author: Chapra
Publisher: MCG
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 27, Problem 30P

Suppose that the position of a falling object is governed by the following differential equation,

d 2 x d t 2 + c m d x d t g = 0

where c = a first-order drag coefficient = 12.5  kg/s, m = mass = 70  kg, and  g = gravitational acceleration = 9.81  m/s 2 . Use the shooting method to solve this equation for position and velocity given the boundary conditions, x ( 0 ) = 0  and  x ( 12 ) = 500 .

Blurred answer
Students have asked these similar questions
The velocity, v, of a falling parachutist is given by v= (1-em), 8. -(c/m)t C where g = 9.8067 m/s². Given the mass, m of the parachutist is 70kg, velocity, v = 40 m/s at time t = 10 s, find the drag coefficient, c by using the Bisection method.
3. In the study of aerodynamic drag on a stationary body, an appropriate non-dimensional grouping has been found to be: QAU3 where, P is the power lost, p is the density of the fluid, A is a typical area, and U is the velocity of the fluid. In laboratory tests with a 1:10 scale model (ratio of the length) at 25°C, the power lost was measured as 5 w when the air velocity was 0.5 m/s. Calculate the power lost in the prototype (kW) at 25°C when the air velocity is 1 m/s.
4. (a) Find a differential equation to model the velocity v of a falling mass m as a function of time. Assume that air resistance is proportional to the instantaneous velocity, with a constant of proportionality k > 0 (this is called the drag coefficient). Take the downward direction to be positive. (b) Solve the differential equation subject to the initial condition v(t = 0) = vo. (c) Determine the terminal velocity of the mass.

Chapter 27 Solutions

EBK NUMERICAL METHODS FOR ENGINEERS

Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY
Solution of Differential Equations and Initial Value Problems; Author: Jefril Amboy;https://www.youtube.com/watch?v=Q68sk7XS-dc;License: Standard YouTube License, CC-BY