Question
Book Icon
Chapter 29, Problem 22P

(a)

To determine

The possible values of L for a hydrogen atom in 3d state.

(a)

Expert Solution
Check Mark

Answer to Problem 22P

The possible values of L for a hydrogen atom in 3d state is 2.58×1034Js.

Explanation of Solution

Write the expression for orbital angular momentum.

  L=l(l+1)

Here, L is the orbital angular momentum, l is the orbital quantum number.

Since, the hydrogen is in 3d state; the principle quantum number will be n=3 and orbital quantum number is l=2.

Conclusion:

Substitute 2 for l and to find the orbital angular momentum

  L=2(2+1)=6

Therefore, possible values of L for a hydrogen atom in 3d state is 6.

(b)

To determine

The possible values of Lz for a hydrogen atom in 3d state.

(b)

Expert Solution
Check Mark

Answer to Problem 22P

The possible values of Lz for a hydrogen atom in 3d state is 2,,0, and 2.

Explanation of Solution

Write the expression for z-component of orbital angular momentum.

  Lz=ml

Here, Lz is the z-component of orbital angular momentum, ml is the magnetic quantum number.

Since, the hydrogen is in 3d state; the principle quantum number will be n=3. Thus, the magnetic quantum number can be 2,1,0,1,2.

Conclusion:

Substitute 2 for ml to find the z-component orbital angular momentum for ml=2.

  Lz=(2)=2

Substitute 1 for ml and to find the z-component orbital angular momentum for ml=1.

  Lz=(1)=

Substitute 0 for ml and to find the z-component orbital angular momentum for ml=0.

  Lz=(0)=0

Substitute 1 for ml and to find the z-component orbital angular momentum for ml=1.

  Lz=(1)=

Substitute 2 for ml to find the z-component orbital angular momentum for ml=2.

  Lz=(2)=2

Therefore, possible values of Lz for a hydrogen atom in 3d state is 2,,0, and 2.

(c)

To determine

The possible values of θ for a hydrogen atom in 3d state.

(c)

Expert Solution
Check Mark

Answer to Problem 22P

The possible values of θ for a hydrogen atom in 3d state are 145°,114°,90.0°,65.9°, and 35.3°.

Explanation of Solution

Write the expression for θ.

  θ=cos1(LzL)

The possible values of Lz for a hydrogen atom in 3d state is 2,,0, and 2 and the possible values of L for a hydrogen atom in 3d state is 2.58×1034Js.

Conclusion:

Substitute 2 for Lz, 2.58×1034Js for L and 1.05×1034Js for to find θ.

  θ=cos1(2(1.05×1034Js)2.58×1034Js)=cos(0.819)=145°

Substitute for Lz, 2.58×1034Js for L and 1.05×1034Js for to find θ.

  θ=cos1((1.05×1034Js)2.58×1034Js)=cos1(0.407)=114°

Substitute 0 for Lz, 2.58×1034Js for L and 1.05×1034Js for to find θ.

  θ=cos1(0(1.05×1034Js)2.58×1034Js)=cos1(0)=90.0°

Substitute for Lz, 2.58×1034Js for L and 1.05×1034Js for to find θ.

  θ=cos1(1.05×1034Js2.58×1034Js)=cos1(0.408)=65.9°

Substitute 2 for Lz, 2.58×1034Js for L and 1.05×1034Js for to find θ.

  θ=cos1(2(1.05×1034Js)2.58×1034Js)=cos1(0.816)=35.3°

Therefore, possible values of θ for a hydrogen atom in 3d state are 145°,114°,90.0°,65.9°, and 35.3°.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 29 Solutions

Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term

Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning