Fluid Mechanics Fundamentals And Applications
Fluid Mechanics Fundamentals And Applications
3rd Edition
ISBN: 9780073380322
Author: Yunus Cengel, John Cimbala
Publisher: MCGRAW-HILL HIGHER EDUCATION
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 3, Problem 165P
To determine

The density of the fluid in the left arm.

Expert Solution & Answer
Check Mark

Answer to Problem 165P

The density of the fluid in the left arm is 841.60kg/m3.

Explanation of Solution

Given information:

The fluid is incompressible and stay separate and do not mix with each other, the angular velocity of rotation of the U-tube is 50rpm, the distance of the centre of rotation from the left arm is 5cm, the distance of the centre of rotation from the left arm is 15cm and the height of both the liquids in the tube is 18cm.

The figure shows the different pressure points.

Fluid Mechanics Fundamentals And Applications, Chapter 3, Problem 165P

Figure-(1)

Write the expression for converting the angular velocity from rpm to rad/s.

ω=2πn60 …… (I)

Here, the angular velocity in rpm is n.

Write the expression for the pressure difference for the fluid at point 2.

P2P1=ρfluidω22(0r12)ρfluidg(h2h1) …… (II)

Here, the pressure of the fluid at point 1 is P1, is the pressure of the fluid at point 2 is P2, the density of the fluid is ρfluid, the angular velocity is ω, the distance of the centre of rotation from the left arm r1, the acceleration due to gravity is g, the height of the fluid at point 1 is h1 and the height of the fluid at point 2 is h2.

Write the expression for the pressure difference for the water at point 3.

P2P3=ρwaterω22(0r22)ρwaterg(h2h1) …… (III)

Here, the pressure of the water at point 2 is P2, the pressure of the water at point 3 is P3, the density of water is ρwater, the distance of the centre of rotation from the right arm r2, the height of the water at point 1 is h1 and the height of the water at point 2 is h2.

Write the expression for the different points at atmospheric pressure.

P2P1=PatmP2P3=PatmP2P1=P2P3 …… (IV)

Calculation:

Substitute 50rpm for n in the Equation (I).

ω=2π(50rpm)60=0.1047(50rpm)=5.235rad/s

Substitute 5.235rad/s for ω, 5cm for r1, 0 for h2, 18cm for h1 and 9.81m/sec2 for g in the Equation (II).

P2P1=ρfluid(5.235)2(0(5cm)2)ρfluid9.81m/sec2(018cm)a2+b2=ρfluid(5.235)2(0(5cm(1m100cm))2)ρfluid9.81m/sec2(018cm(1m100cm))a2+b2=ρfluid(5.235)2(00.052m2)ρfluid9.81m/sec2(0.18m)=0.034ρfluid+1.7658ρfluid P2P1=1.7318ρfluid

Substitute 5.235rad/s for ω, 15cm for r2, 0 for h2, 18cm for h1 and 9.81m/sec2 in the Equation (III).

P2P3=ρwater(5.235)2(0(15cm)2)ρwater9.81m/sec2(018cm)=[ρwater(5.235)2(0(15cm(1m100cm))2)ρwater9.81m/sec2(018cm(1m100cm))]=[1000kg/m3(5.235)2(00.152m2)1000kg/m39.81m/sec2(0.18m)]=308.30+1765.8

   P2P3=1457.5kg/m2

Substitute 1.7318ρfluid for P2P1 and 1457.5 for P2P3 in the Equation (V).

1.7318ρfluid=1457.5kg/m2ρfluid=1457.5kg/m21.7318=841.60kg/m2

Conclusion:

The density of the fluid in the left arm is 841.60kg/m3.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The water in a tank is pressurized by air, and the pressure is measured by a multifluid manometer as shown in Fig. The tank is located on a mountain at an altitude of 1500 m where the atmospheric pressure is 75.6 kPa. Determine the air pressure in the tank if h1 =50.1 m, h2 =5 0.2 m, and h3 =5 0.35 m. Take the densities of water, oil, and mercury to be 1000 kg/m3, 900 kg/m3, and 13,600 kg/m3 respectively.
Three liquids given the following properties are poured into the cylindrical container with a diameter of 3 meters and a height of 6 meters. First fluid poured: sg = 1.0, V = 17.6715 m^3 Second fluid poured: sg = 0.81, V = 10.6029 m^3 Third fluid poured: sg = 2.94 , V = 7.0686 m^3 Assuming that the container is closed after pouring the fluids and the stable state in the container is reached, determine the pressure at the height of 4-m from the bottom of the tank Select the correct response 7.9461 kPa 12.8084 kPa 28.8414 kPa 9.8100 kPa Assuming seawater to have a constant specific weight of 10.05 kN/m^3, what is the absolute pressure at a depth of 10 km. Select the correct response(s): 939 atm 339 atm 993 atm 399 atm
Why is the product of P(pressure) and V(specific volume) not zero when P approaches 0?

Chapter 3 Solutions

Fluid Mechanics Fundamentals And Applications

Ch. 3 - A manometer is used to measure the air pressure in...Ch. 3 - The water in a tank is pressurized by air, and the...Ch. 3 - Determine the atmospheric pressure at a location...Ch. 3 - The gagepressure in a liquid at a depth of 2.5 m...Ch. 3 - The absolute pressure in water at a depth of 8 m...Ch. 3 - Show that 1kgf/cm2=14.223psi .Ch. 3 - Prob. 17EPCh. 3 - Consider a 55-kg woman who has a total foot...Ch. 3 - A vacuum gage connected to a tank reads 45 kPa at...Ch. 3 - Prob. 20EPCh. 3 - A pressure gage connected to a tank reads 500kPa...Ch. 3 - Prob. 22PCh. 3 - Prob. 23PCh. 3 - Water from a reservoir is raised in a vertical...Ch. 3 - The barometer of a mountain hiker reads 980 mbars...Ch. 3 - The basic barometer can be used to measure the...Ch. 3 - Prob. 28PCh. 3 - Prob. 29EPCh. 3 - A gas is contained in a vertical, frictionless...Ch. 3 - Both a gage and a manometer are attached to a gas...Ch. 3 - The variation of pressure P in a gas with density ...Ch. 3 - The system shown in the figure is used to...Ch. 3 - The manometer shown in the figure is designed to...Ch. 3 - A manometer containing ( =850kg/m3 ) attached to a...Ch. 3 - A mercury ( =13,600kg/m3 ) is connected to an air...Ch. 3 - Repeat Prob. 3-37 for a differential mercury...Ch. 3 - Blood pressure is usually measured by rapping a...Ch. 3 - The maximum blood pressure in the upper arm of a...Ch. 3 - Consider a 1.73-m-tall man standing vertically in...Ch. 3 - Consider a U-tube whose arms are open to the...Ch. 3 - Prob. 44PCh. 3 - Freshwater and seamier flowing in parallel...Ch. 3 - Repeat Prob. 3-48 by replacing the air with oil...Ch. 3 - The pressure in a natural gas pipeline is measured...Ch. 3 - Repeat Prob. 3-42E by replacing air by oil with a...Ch. 3 - The gage pressure of the air in the tank shown in...Ch. 3 - Repeat Prob. 3-44 for a gage pressure of 40 kPa.Ch. 3 - The 500-kg load on the hydraulic lift show in Fig....Ch. 3 - Prob. 52EPCh. 3 - Pressure is often given in terms of a liquid...Ch. 3 - Prob. 54PCh. 3 - Consider a double-fluid manometer attached to an...Ch. 3 - The pressure difference between an oil pipe and...Ch. 3 - Consider the system shown in Fig. P3-51. If a...Ch. 3 - Prob. 58PCh. 3 - Prob. 59PCh. 3 - Define the resultant hydrostatic force acting on a...Ch. 3 - Someone claims that she can determine the...Ch. 3 - A submersed horizontal flat plate is suspended in...Ch. 3 - You may have noticed that dams are much thicker at...Ch. 3 - Consider a submerged curved surface. Explain how...Ch. 3 - Consider a submersed curved surface. Explain how...Ch. 3 - Consider a circular surface subjected to...Ch. 3 - Consider a heavy car submerged in water in a lake...Ch. 3 - A long, solid cylinder of radius 2 ft hinged at...Ch. 3 - Consider a 8-m-long, 8-m-wide, and 2-m-high...Ch. 3 - Consider a 200-ft-high, dam filled to capacity....Ch. 3 - A room the lower level of a cruise ship has a...Ch. 3 - The water side of the wall of a 70-m-long dam is a...Ch. 3 - For a gate width of 2 m into the paper (Fig....Ch. 3 - Determine the resultant force acting on the...Ch. 3 - A 6-m-high, 5-m-wide rectangular plate blocks the...Ch. 3 - The flow of water from a reservoir is controlled...Ch. 3 - Repeat Prob. 3-76E for a water height of 6 ft.Ch. 3 - A water trough of semicircular cross section of...Ch. 3 - Prob. 80PCh. 3 - An open settling tank shown in the figure contains...Ch. 3 - From Prob. 3-80, knowing that the density of the...Ch. 3 - Prob. 83PCh. 3 - The two sides of a V-shaped water trough are...Ch. 3 - Repeat Prob. 3-82 for the case of a partially...Ch. 3 - A retaining wall against a mud slide is to be...Ch. 3 - Prob. 87PCh. 3 - A 4-m-long quarter-circular gate of radius 3 m and...Ch. 3 - Repeat Prob. 3-90 for a radius of 2 m for the...Ch. 3 - Consider a flat plate of thickness t, width w into...Ch. 3 - Prob. 91PCh. 3 - Consider a 1-m wide inclined gate of negligible...Ch. 3 - Prob. 93PCh. 3 - What is buoyant force? What causes it? What is the...Ch. 3 - Consider two identical spherical bails submerged...Ch. 3 - Consider two 5-cm-diaineter spherical balls-one...Ch. 3 - Prob. 97CPCh. 3 - Prob. 98CPCh. 3 - The density of a liquid is to be determined by an...Ch. 3 - A crane is used to lower weights into a lake for...Ch. 3 - Prob. 101PCh. 3 - Prob. 102PCh. 3 - Prob. 103PCh. 3 - It is estimated that 90 percent of an iceberg’s...Ch. 3 - The weight of a body is usually measured by...Ch. 3 - Prob. 106PCh. 3 - Prob. 107PCh. 3 - The hull of a boat has a volume of 180 m3, and the...Ch. 3 - Under what conditions can a moving body of fluid...Ch. 3 - Consider a glass of water. Compare the water...Ch. 3 - Consider two identical glasses of water, one...Ch. 3 - Consider a vertical cylindrical container...Ch. 3 - Prob. 113PCh. 3 - Consider two water tanks filled with water. The...Ch. 3 - Prob. 115PCh. 3 - A 3-ft-diameter vertical cylindrical lank open to...Ch. 3 - Prob. 117PCh. 3 - A 30-cm-diameter, 90-cm-high vertical cylindrical...Ch. 3 - A fish tank that contains 60-cm-high water is...Ch. 3 - A 3-m-diameter vertical cylindrical milk tank...Ch. 3 - Consider a tank of rectangular cross-section...Ch. 3 - The bottom quarter of a vertical cylindrical tank...Ch. 3 - Milk with a density of 1020 kg/m3 is transported...Ch. 3 - Prob. 124PCh. 3 - The distance between the centers of the two arms...Ch. 3 - A 1.2-m-diameter, 3-m-high scaled vertical...Ch. 3 - A15-ft-long, 6-ft-high rectangular tank open to...Ch. 3 - An 8-ft-long tank open to the atmosphere initially...Ch. 3 - A 3-m-diameter, 7-m-long cylindrical tank is...Ch. 3 - Prob. 131PCh. 3 - Prob. 132PCh. 3 - Prob. 133PCh. 3 - Prob. 134PCh. 3 - An air-conditioning system requires a 34-m-long...Ch. 3 - Prob. 136PCh. 3 - If the rate of rotational speed of the 3-tube...Ch. 3 - A 30-cm-diameter vertical cylindrical vessel is...Ch. 3 - Prob. 139PCh. 3 - Prob. 141PCh. 3 - Prob. 142EPCh. 3 - The basic barometer can be used as an...Ch. 3 - The lower half of a 12-m-high cylindrical...Ch. 3 - A vertical, frictionless pistoncylinder device...Ch. 3 - A pressure cooker cooks a lot faster than an...Ch. 3 - Prob. 147PCh. 3 - The average atmospheric pressure on earth is...Ch. 3 - When measuring small pressure differences with a...Ch. 3 - Prob. 150EPCh. 3 - Prob. 151PCh. 3 - A gasoline line is connected to a pressure gage...Ch. 3 - Prob. 154PCh. 3 - Prob. 155EPCh. 3 - The pressure of water flowing through a pipe is...Ch. 3 - Consider a U-tube filled with mercury as shown in...Ch. 3 - Prob. 158PCh. 3 - The variation of pressure with density in a thick...Ch. 3 - A 3-m-high. 5-m-wide rectangular gale is hinged al...Ch. 3 - Prob. 161PCh. 3 - A semicircular 40-ft-diameter tunnel is to be...Ch. 3 - A 30-ton. 4-m-diameter hemispherical dome on a...Ch. 3 - The water in a 25-m-deep reservoir is kept inside...Ch. 3 - Prob. 165PCh. 3 - A 1-m-diameter, 2-m-high vertical cylinder is...Ch. 3 - A 5-m-long, 4-m-high tank contains 2.5-m-deep...Ch. 3 - Prob. 169PCh. 3 - Prob. 170PCh. 3 - The density of a floating body can be determined...Ch. 3 - The 280-ke, 6-m-wide rectangular gate shown in Fig...Ch. 3 - Prob. 173PCh. 3 - Prob. 174PCh. 3 - Prob. 175PCh. 3 - The gage pressure in a pipe is measured by a...Ch. 3 - Prob. 177PCh. 3 - Prob. 178PCh. 3 - Prob. 179PCh. 3 - Consider the vertical rectangular wall of a water...Ch. 3 - Prob. 181PCh. 3 - Prob. 182PCh. 3 - Prob. 183PCh. 3 - Prob. 184PCh. 3 - Prob. 185PCh. 3 - Consider a 6-m-diameter spherical sate holding a...Ch. 3 - Prob. 188PCh. 3 - Prob. 189PCh. 3 - Prob. 190PCh. 3 - Prob. 191PCh. 3 - Prob. 192PCh. 3 - A 15-cm-diameter, 40-cm-high vertical cylindrical...Ch. 3 - Prob. 194PCh. 3 - Prob. 195PCh. 3 - Shoes are to be designed to enable people of up to...Ch. 3 - The volume of a rock is to be determined without...Ch. 3 - The density of stainless steel is about 8000 kg/m3...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
First Law of Thermodynamics, Basic Introduction - Internal Energy, Heat and Work - Chemistry; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=NyOYW07-L5g;License: Standard youtube license