BuyFindarrow_forward

Elementary Geometry for College St...

6th Edition
Daniel C. Alexander + 1 other
ISBN: 9781285195698

Solutions

Chapter
Section
BuyFindarrow_forward

Elementary Geometry for College St...

6th Edition
Daniel C. Alexander + 1 other
ISBN: 9781285195698
Textbook Problem
1 views

In Exercises 30 to 32, draw the triangles that are to be shown congruent separately. Then complete the proof.

Chapter 3.2, Problem 32E, In Exercises 30 to 32, draw the triangles that are to be shown congruent separately. Then complete

Given: M N ¯ Q P ¯ and M Q ¯ N P ¯
Prove: M Q ¯ N P ¯
(HINT: Show Δ M Q P Δ P N M .)

To determine

To prove:

The given statement MN¯QP¯ and MQ¯NP¯.

Explanation

Given:

The given statement are,

MN¯QP¯ and MQ¯NP¯

Figure (1)

Properties used:

(1) If two lines are cut by a transversal so that two corresponding angles are congruent, then these lines are parallel.

(2) In two triangles, if two angles and one non included side are congruent, then the triangles are congruent.

(3) If two triangles are congruent to each other then all sides of the triangle are congruent to each other.

Approach:

The required figure is,

Figure (2)

The given statements are,

MN¯QP¯ and MQ¯NP¯

Line MN and line QP are parallel lines and 1 and 2 are corresponding angles.

So,

12

Line MQ and line NP are parallel lines and 3 and 4 are corresponding angles.

So,

34

The side PM is common in both triangles ΔMQP and ΔPNM.

So,

PM¯PM¯

Use AAS criteria of triangle congruency.

ΔMQPΔPNM

Use transitive property of congruence.

MQ¯NP¯

Thus, MQ¯NP¯.

PROOF
Statements Reasons
1

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started
Sect-3.1 P-11ESect-3.1 P-12ESect-3.1 P-13ESect-3.1 P-14ESect-3.1 P-15ESect-3.1 P-16ESect-3.1 P-17ESect-3.1 P-18ESect-3.1 P-19ESect-3.1 P-20ESect-3.1 P-21ESect-3.1 P-22ESect-3.1 P-23ESect-3.1 P-24ESect-3.1 P-25ESect-3.1 P-26ESect-3.1 P-27ESect-3.1 P-28ESect-3.1 P-29ESect-3.1 P-30ESect-3.1 P-31ESect-3.1 P-32ESect-3.1 P-33ESect-3.1 P-34ESect-3.1 P-35ESect-3.1 P-36ESect-3.1 P-37ESect-3.1 P-38ESect-3.1 P-39ESect-3.1 P-40ESect-3.1 P-41ESect-3.2 P-1ESect-3.2 P-2ESect-3.2 P-3ESect-3.2 P-4ESect-3.2 P-5ESect-3.2 P-6ESect-3.2 P-7ESect-3.2 P-8ESect-3.2 P-9ESect-3.2 P-10ESect-3.2 P-11ESect-3.2 P-12ESect-3.2 P-13ESect-3.2 P-14ESect-3.2 P-15ESect-3.2 P-16ESect-3.2 P-17ESect-3.2 P-18ESect-3.2 P-19ESect-3.2 P-20ESect-3.2 P-21ESect-3.2 P-22ESect-3.2 P-23ESect-3.2 P-24ESect-3.2 P-25ESect-3.2 P-26ESect-3.2 P-27ESect-3.2 P-28ESect-3.2 P-29ESect-3.2 P-30ESect-3.2 P-31ESect-3.2 P-32ESect-3.2 P-33ESect-3.2 P-34ESect-3.2 P-35ESect-3.2 P-36ESect-3.2 P-37ESect-3.2 P-38ESect-3.2 P-39ESect-3.2 P-40ESect-3.3 P-1ESect-3.3 P-2ESect-3.3 P-3ESect-3.3 P-4ESect-3.3 P-5ESect-3.3 P-6ESect-3.3 P-7ESect-3.3 P-8ESect-3.3 P-9ESect-3.3 P-10ESect-3.3 P-11ESect-3.3 P-12ESect-3.3 P-13ESect-3.3 P-14ESect-3.3 P-15ESect-3.3 P-16ESect-3.3 P-17ESect-3.3 P-18ESect-3.3 P-19ESect-3.3 P-20ESect-3.3 P-21ESect-3.3 P-22ESect-3.3 P-23ESect-3.3 P-24ESect-3.3 P-25ESect-3.3 P-26ESect-3.3 P-27ESect-3.3 P-28ESect-3.3 P-29ESect-3.3 P-30ESect-3.3 P-31ESect-3.3 P-32ESect-3.3 P-33ESect-3.3 P-34ESect-3.3 P-35ESect-3.3 P-36ESect-3.3 P-37ESect-3.3 P-38ESect-3.3 P-39ESect-3.3 P-40ESect-3.3 P-41ESect-3.3 P-42ESect-3.3 P-43ESect-3.3 P-44ESect-3.3 P-45ESect-3.3 P-46ESect-3.3 P-47ESect-3.3 P-48ESect-3.4 P-1ESect-3.4 P-2ESect-3.4 P-3ESect-3.4 P-4ESect-3.4 P-5ESect-3.4 P-6ESect-3.4 P-7ESect-3.4 P-8ESect-3.4 P-9ESect-3.4 P-10ESect-3.4 P-11ESect-3.4 P-12ESect-3.4 P-13ESect-3.4 P-14ESect-3.4 P-15ESect-3.4 P-16ESect-3.4 P-17ESect-3.4 P-18ESect-3.4 P-19ESect-3.4 P-20ESect-3.4 P-21ESect-3.4 P-22ESect-3.4 P-23ESect-3.4 P-24ESect-3.4 P-25ESect-3.4 P-26ESect-3.4 P-27ESect-3.4 P-28ESect-3.4 P-29ESect-3.4 P-30ESect-3.4 P-31ESect-3.4 P-32ESect-3.4 P-33ESect-3.4 P-34ESect-3.4 P-35ESect-3.4 P-36ESect-3.4 P-37ESect-3.4 P-38ESect-3.4 P-39ESect-3.4 P-40ESect-3.5 P-1ESect-3.5 P-2ESect-3.5 P-3ESect-3.5 P-4ESect-3.5 P-5ESect-3.5 P-6ESect-3.5 P-7ESect-3.5 P-8ESect-3.5 P-9ESect-3.5 P-10ESect-3.5 P-11ESect-3.5 P-12ESect-3.5 P-13ESect-3.5 P-14ESect-3.5 P-15ESect-3.5 P-16ESect-3.5 P-17ESect-3.5 P-18ESect-3.5 P-19ESect-3.5 P-20ESect-3.5 P-21ESect-3.5 P-22ESect-3.5 P-23ESect-3.5 P-24ESect-3.5 P-25ESect-3.5 P-26ESect-3.5 P-27ESect-3.5 P-28ESect-3.5 P-29ESect-3.5 P-30ESect-3.5 P-31ESect-3.5 P-32ESect-3.5 P-33ESect-3.5 P-34ESect-3.5 P-35ESect-3.5 P-36ESect-3.5 P-37ESect-3.5 P-38ESect-3.CR P-1CRSect-3.CR P-2CRSect-3.CR P-3CRSect-3.CR P-4CRSect-3.CR P-5CRSect-3.CR P-6CRSect-3.CR P-7CRSect-3.CR P-8CRSect-3.CR P-9CRSect-3.CR P-10CRSect-3.CR P-11CRSect-3.CR P-12CRSect-3.CR P-13CRSect-3.CR P-14CRSect-3.CR P-15CRSect-3.CR P-16CRSect-3.CR P-17CRSect-3.CR P-18CRSect-3.CR P-19CRSect-3.CR P-20CRSect-3.CR P-21CRSect-3.CR P-22CRSect-3.CR P-23CRSect-3.CR P-24CRSect-3.CR P-25CRSect-3.CR P-26CRSect-3.CR P-27CRSect-3.CR P-28CRSect-3.CR P-29CRSect-3.CT P-1CTSect-3.CT P-2CTSect-3.CT P-3CTSect-3.CT P-4CTSect-3.CT P-5CTSect-3.CT P-6CTSect-3.CT P-7CTSect-3.CT P-8CTSect-3.CT P-9CTSect-3.CT P-10CTSect-3.CT P-11CTSect-3.CT P-12CTSect-3.CT P-13CTSect-3.CT P-14CTSect-3.CT P-15CTSect-3.CT P-16CTSect-3.CT P-17CTSect-3.CT P-18CTSect-3.CT P-19CT

Additional Math Solutions

Find more solutions based on key concepts

Show solutions add

Change 28 ft/s to ft/min.

Elementary Technical Mathematics

Express the function in the form f g h. 50. H(x)=2+x8

Single Variable Calculus: Early Transcendentals, Volume I

Convert the expressions in Exercises 8596 radical form. 94(1x)7/3

Finite Mathematics and Applied Calculus (MindTap Course List)

Magnitude of a Vector Find the magnitude of the given vector. 11. 2, 1, 2

Precalculus: Mathematics for Calculus (Standalone Book)

In Exercises 7378, determine whether the statement is true or false. If it is true, explain why it is true. If ...

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

Evaluate the integral. 21. xe2x(1+2x)2dx

Single Variable Calculus: Early Transcendentals

An estimate of 13x4 using Simpsons Rule with n = 4 gives: a) 2425 b) 1483 c) 1523 d) 2445

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th

Solve each equation. logx+1+logx-1=1

College Algebra (MindTap Course List)