BuyFindarrow_forward

Elementary Geometry for College St...

6th Edition
Daniel C. Alexander + 1 other
ISBN: 9781285195698

Solutions

Chapter
Section
BuyFindarrow_forward

Elementary Geometry for College St...

6th Edition
Daniel C. Alexander + 1 other
ISBN: 9781285195698
Textbook Problem
1 views

Given: A C bisects B A D
Prove: A D > C D

Chapter 3.CR, Problem 14CR, Given: AC bisects BAD Prove: ADCD

To determine

To prove:

The side AD¯ is greater than the side CD¯.

Explanation

Given:

The given figure is,

Figure (1)

From figure (1).

AC bisects BAD

Approach:

An angle bisector divides the angle in two congruent angles.

Opposite side of larger angle has the larger length in a triangle.

Approach:

Consider the triangle ΔABD,

From the given data,

The angle bisector AC¯ bisects BAD in two congruent angles m1 and m2. So,

m1=m2

Consider the triangle ΔABC,

Since, the measure of the exterior angle mACD of the triangle is the sum of measures of the two nonadjacent angles m1 and mB. Then,

mACD=m1+mB

Then, the exterior angle mACD is greater than the angle m1. So,

mACD>m1

Since, the angle m1 is equal to the angle m2 then,

mACD>m2

Since, the side opposite to larger angle in a triangle has the larger length

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started
Sect-3.1 P-11ESect-3.1 P-12ESect-3.1 P-13ESect-3.1 P-14ESect-3.1 P-15ESect-3.1 P-16ESect-3.1 P-17ESect-3.1 P-18ESect-3.1 P-19ESect-3.1 P-20ESect-3.1 P-21ESect-3.1 P-22ESect-3.1 P-23ESect-3.1 P-24ESect-3.1 P-25ESect-3.1 P-26ESect-3.1 P-27ESect-3.1 P-28ESect-3.1 P-29ESect-3.1 P-30ESect-3.1 P-31ESect-3.1 P-32ESect-3.1 P-33ESect-3.1 P-34ESect-3.1 P-35ESect-3.1 P-36ESect-3.1 P-37ESect-3.1 P-38ESect-3.1 P-39ESect-3.1 P-40ESect-3.1 P-41ESect-3.2 P-1ESect-3.2 P-2ESect-3.2 P-3ESect-3.2 P-4ESect-3.2 P-5ESect-3.2 P-6ESect-3.2 P-7ESect-3.2 P-8ESect-3.2 P-9ESect-3.2 P-10ESect-3.2 P-11ESect-3.2 P-12ESect-3.2 P-13ESect-3.2 P-14ESect-3.2 P-15ESect-3.2 P-16ESect-3.2 P-17ESect-3.2 P-18ESect-3.2 P-19ESect-3.2 P-20ESect-3.2 P-21ESect-3.2 P-22ESect-3.2 P-23ESect-3.2 P-24ESect-3.2 P-25ESect-3.2 P-26ESect-3.2 P-27ESect-3.2 P-28ESect-3.2 P-29ESect-3.2 P-30ESect-3.2 P-31ESect-3.2 P-32ESect-3.2 P-33ESect-3.2 P-34ESect-3.2 P-35ESect-3.2 P-36ESect-3.2 P-37ESect-3.2 P-38ESect-3.2 P-39ESect-3.2 P-40ESect-3.3 P-1ESect-3.3 P-2ESect-3.3 P-3ESect-3.3 P-4ESect-3.3 P-5ESect-3.3 P-6ESect-3.3 P-7ESect-3.3 P-8ESect-3.3 P-9ESect-3.3 P-10ESect-3.3 P-11ESect-3.3 P-12ESect-3.3 P-13ESect-3.3 P-14ESect-3.3 P-15ESect-3.3 P-16ESect-3.3 P-17ESect-3.3 P-18ESect-3.3 P-19ESect-3.3 P-20ESect-3.3 P-21ESect-3.3 P-22ESect-3.3 P-23ESect-3.3 P-24ESect-3.3 P-25ESect-3.3 P-26ESect-3.3 P-27ESect-3.3 P-28ESect-3.3 P-29ESect-3.3 P-30ESect-3.3 P-31ESect-3.3 P-32ESect-3.3 P-33ESect-3.3 P-34ESect-3.3 P-35ESect-3.3 P-36ESect-3.3 P-37ESect-3.3 P-38ESect-3.3 P-39ESect-3.3 P-40ESect-3.3 P-41ESect-3.3 P-42ESect-3.3 P-43ESect-3.3 P-44ESect-3.3 P-45ESect-3.3 P-46ESect-3.3 P-47ESect-3.3 P-48ESect-3.4 P-1ESect-3.4 P-2ESect-3.4 P-3ESect-3.4 P-4ESect-3.4 P-5ESect-3.4 P-6ESect-3.4 P-7ESect-3.4 P-8ESect-3.4 P-9ESect-3.4 P-10ESect-3.4 P-11ESect-3.4 P-12ESect-3.4 P-13ESect-3.4 P-14ESect-3.4 P-15ESect-3.4 P-16ESect-3.4 P-17ESect-3.4 P-18ESect-3.4 P-19ESect-3.4 P-20ESect-3.4 P-21ESect-3.4 P-22ESect-3.4 P-23ESect-3.4 P-24ESect-3.4 P-25ESect-3.4 P-26ESect-3.4 P-27ESect-3.4 P-28ESect-3.4 P-29ESect-3.4 P-30ESect-3.4 P-31ESect-3.4 P-32ESect-3.4 P-33ESect-3.4 P-34ESect-3.4 P-35ESect-3.4 P-36ESect-3.4 P-37ESect-3.4 P-38ESect-3.4 P-39ESect-3.4 P-40ESect-3.5 P-1ESect-3.5 P-2ESect-3.5 P-3ESect-3.5 P-4ESect-3.5 P-5ESect-3.5 P-6ESect-3.5 P-7ESect-3.5 P-8ESect-3.5 P-9ESect-3.5 P-10ESect-3.5 P-11ESect-3.5 P-12ESect-3.5 P-13ESect-3.5 P-14ESect-3.5 P-15ESect-3.5 P-16ESect-3.5 P-17ESect-3.5 P-18ESect-3.5 P-19ESect-3.5 P-20ESect-3.5 P-21ESect-3.5 P-22ESect-3.5 P-23ESect-3.5 P-24ESect-3.5 P-25ESect-3.5 P-26ESect-3.5 P-27ESect-3.5 P-28ESect-3.5 P-29ESect-3.5 P-30ESect-3.5 P-31ESect-3.5 P-32ESect-3.5 P-33ESect-3.5 P-34ESect-3.5 P-35ESect-3.5 P-36ESect-3.5 P-37ESect-3.5 P-38ESect-3.CR P-1CRSect-3.CR P-2CRSect-3.CR P-3CRSect-3.CR P-4CRSect-3.CR P-5CRSect-3.CR P-6CRSect-3.CR P-7CRSect-3.CR P-8CRSect-3.CR P-9CRSect-3.CR P-10CRSect-3.CR P-11CRSect-3.CR P-12CRSect-3.CR P-13CRSect-3.CR P-14CRSect-3.CR P-15CRSect-3.CR P-16CRSect-3.CR P-17CRSect-3.CR P-18CRSect-3.CR P-19CRSect-3.CR P-20CRSect-3.CR P-21CRSect-3.CR P-22CRSect-3.CR P-23CRSect-3.CR P-24CRSect-3.CR P-25CRSect-3.CR P-26CRSect-3.CR P-27CRSect-3.CR P-28CRSect-3.CR P-29CRSect-3.CT P-1CTSect-3.CT P-2CTSect-3.CT P-3CTSect-3.CT P-4CTSect-3.CT P-5CTSect-3.CT P-6CTSect-3.CT P-7CTSect-3.CT P-8CTSect-3.CT P-9CTSect-3.CT P-10CTSect-3.CT P-11CTSect-3.CT P-12CTSect-3.CT P-13CTSect-3.CT P-14CTSect-3.CT P-15CTSect-3.CT P-16CTSect-3.CT P-17CTSect-3.CT P-18CTSect-3.CT P-19CT

Additional Math Solutions

Find more solutions based on key concepts

Show solutions add

Evaluate the integral. cos(1/x)x3dx

Calculus (MindTap Course List)

Prove the identity. 11. sinh(x + y) = sinh x cosh y + cosh x sinh y

Single Variable Calculus: Early Transcendentals, Volume I

In Exercises 17-20, determine whether the point lies on the graph of the function. 20. (3,113);h(t)=|t+1|t3+1

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

In Exercises 5-8, find the limit. limx03x2x+3x(x)2+(x)3x

Calculus: An Applied Approach (MindTap Course List)

Find y by implicit differentiation. 36. x2 + xy + y2 = 3

Single Variable Calculus: Early Transcendentals

∫ sin 3x cos 6x dx =

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th

True or False: By the Integral Test, converges.

Study Guide for Stewart's Multivariable Calculus, 8th

Why are studies that examine the effects of aging not considered true experiments?

Research Methods for the Behavioral Sciences (MindTap Course List)