Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 4, Problem 27P

(a)

To determine

The expression for the acceleration of the car in terms of angle and it is independent of mass and length.

(b)

To determine

The acceleration of the car.

Blurred answer
Students have asked these similar questions
An object of mass m1= 5.0 kg placed on a frictionless, horizontal table is connected to a string thatpasses over a pulley and then is fastened to a hanging object of mass m2 = 9.0 kg as shown in theFigure. Find:(a) The magnitude of the acceleration of the objects and(b) The tension T in the string.
A block with mass m1 = 9.2 kg rests on the surface of a horizontal table which has a coefficient of kinetic friction of μk = 0.58. A second block with a mass m2 = 10.8 kg is connected to the first by an ideal string passing over an ideal pulley such that the second block is suspended vertically. The second block is released from rest, and motion occurs. Using the variable T to represent tension, write an expression for the sum of the forces in the y-direction, ΣFy, for block 2.  Using the variable T to represent tension, write an expression for the sum of the forces in the x-direction, ΣFx for block 1.   Block 1 accelerates along the tabletop, in the horizontal direction, while block 2 moves vertically. With the coordinate system provided in the drawing, we may write a⃗ 1=a1i^a→1=a1i^ and a⃗ 2=a2y^a→2=a2y^. Write an expression that relates the vertical component of the acceleration of block 2 to the horizontal component of the acceleration of block 1.  Write an expression using the…
A block with mass m1 = 9.2 kg rests on the surface of a horizontal table which has a coefficient of kinetic friction of μk = 0.58. A second block with a mass m2 = 10.8 kg is connected to the first by an ideal string passing over an ideal pulley such that the second block is suspended vertically. The second block is released from rest, and motion occurs. Using the variable T to represent tension, write an expression for the sum of the forces in the y-direction, ΣFy, for block 2.  Using the variable T to represent tension, write an expression for the sum of the forces in the x-direction, ΣFx for block 1.   Block 1 accelerates along the tabletop, in the horizontal direction, while block 2 moves vertically. With the coordinate system provided in the drawing, we may write a⃗ 1=a1i^a→1=a1i^ and a⃗ 2=a2y^a→2=a2y^. Write an expression that relates the vertical component of the acceleration of block 2 to the horizontal component of the acceleration of block 1.  Write an expression using the…

Chapter 4 Solutions

Principles of Physics: A Calculus-Based Text

Ch. 4 - Prob. 4OQCh. 4 - Prob. 5OQCh. 4 - Prob. 6OQCh. 4 - Prob. 1CQCh. 4 - If a car is traveling due westward with a constant...Ch. 4 - A person holds a ball in her hand. (a) Identify...Ch. 4 - Prob. 4CQCh. 4 - If you hold a horizontal metal bar several...Ch. 4 - Prob. 6CQCh. 4 - Prob. 7CQCh. 4 - Prob. 8CQCh. 4 - Balancing carefully, three boys inch out onto a...Ch. 4 - Prob. 10CQCh. 4 - Prob. 11CQCh. 4 - Prob. 12CQCh. 4 - Prob. 13CQCh. 4 - Give reasons for the answers to each of the...Ch. 4 - Prob. 15CQCh. 4 - In Figure CQ4.16, the light, taut, unstretchable...Ch. 4 - Prob. 17CQCh. 4 - Prob. 18CQCh. 4 - Prob. 19CQCh. 4 - A force F applied to an object of mass m1 produces...Ch. 4 - (a) A car with a mass of 850 kg is moving to the...Ch. 4 - A toy rocket engine is securely fastened to a...Ch. 4 - Two forces, F1=(6i4j)N and F2=(3i+7j)N, act on a...Ch. 4 - Prob. 5PCh. 4 - Prob. 6PCh. 4 - Two forces F1 and F2 act on a 5.00-kg object....Ch. 4 - A 3.00-kg object is moving in a plane, with its x...Ch. 4 - A woman weighs 120 lb. Determine (a) her weight in...Ch. 4 - Prob. 10PCh. 4 - Prob. 11PCh. 4 - Prob. 12PCh. 4 - Prob. 13PCh. 4 - Prob. 14PCh. 4 - Prob. 15PCh. 4 - You stand on the seat of a chair and then hop off....Ch. 4 - Prob. 17PCh. 4 - A block slides down a frictionless plane having an...Ch. 4 - Prob. 19PCh. 4 - A setup similar to the one shown in Figure P4.20...Ch. 4 - Prob. 21PCh. 4 - The systems shown in Figure P4.22 are in...Ch. 4 - A bag of cement weighing 325 N hangs in...Ch. 4 - Prob. 24PCh. 4 - In Example 4.6, we investigated the apparent...Ch. 4 - Figure P4.26 shows loads hanging from the ceiling...Ch. 4 - Prob. 27PCh. 4 - An object of mass m1 = 5.00 kg placed on a...Ch. 4 - An object of mass m = 1.00 kg is observed to have...Ch. 4 - Two objects are connected by a light string that...Ch. 4 - Prob. 31PCh. 4 - A car is stuck in the mud. A tow truck pulls on...Ch. 4 - Two blocks, each of mass m = 3.50 kg, are hung...Ch. 4 - Two blocks, each of mass m, are hung from the...Ch. 4 - In Figure P4.35, the man and the platform together...Ch. 4 - Two objects with masses of 3.00 kg and 5.00 kg are...Ch. 4 - A frictionless plane is 10.0 m long and inclined...Ch. 4 - Prob. 39PCh. 4 - An object of mass m1 hangs from a string that...Ch. 4 - A young woman buys an inexpensive used car for...Ch. 4 - A 1 000-kg car is pulling a 300-kg trailer....Ch. 4 - An object of mass M is held in place by an applied...Ch. 4 - Prob. 44PCh. 4 - An inventive child named Nick wants to reach an...Ch. 4 - In the situation described in Problem 45 and...Ch. 4 - Two blocks of mass 3.50 kg and 8.00 kg are...Ch. 4 - Prob. 48PCh. 4 - In Example 4.5, we pushed on two blocks on a...Ch. 4 - Prob. 50PCh. 4 - Prob. 51PCh. 4 - Prob. 52PCh. 4 - Review. A block of mass m = 2.00 kg is released...Ch. 4 - A student is asked to measure the acceleration of...Ch. 4 - Prob. 55PCh. 4 - Prob. 56PCh. 4 - A car accelerates down a hill (Fig. P4.57), going...Ch. 4 - Prob. 58PCh. 4 - In Figure P4.53, the incline has mass M and is...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Newton's Third Law of Motion: Action and Reaction; Author: Professor Dave explains;https://www.youtube.com/watch?v=y61_VPKH2B4;License: Standard YouTube License, CC-BY