FUND OF THERMAL-FLUID SCIENCES W/CONNEC
FUND OF THERMAL-FLUID SCIENCES W/CONNEC
5th Edition
ISBN: 9781260277739
Author: CENGEL
Publisher: MCG
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 4, Problem 29P

(a)

To determine

The final pressure of the refrigerant R-134a.

(a)

Expert Solution
Check Mark

Explanation of Solution

Given:

The mass of the refrigernet (mR) is 0.85 kg.

The Intial temperature of the refrigernet (Ti)  is 10°C.

The mass of the refrigernet (mp) is 12 kg.

The diameter of the piston (D) is 25 cm.

The final temperature of the refrigernet is (Tf) 15°C.

The local atmospheric pressure (patm) is 88 kPa

Calculation:

The final pressure is equal to the initial pressure of the refrigerant R-134a.

  P2=P1=Patm+mpg(πD24)

  P2=88kPa+(12kg)(9.81m/s2)(π(25cm)24)=88kPa+(12kg)(9.81m/s2)(π(25cm)24)(1kN1000kgm/s2)=90.4kPa

Thus, the final pressure of the refrigerant R-134a is 90.4kPa_.

(b)

To determine

The final pressure of the refrigerant R-134a.

(b)

Expert Solution
Check Mark

Explanation of Solution

Convert the unit of initial pressure from kPa to MPa.

  P1=90.4kPa=90.4kPa(1MPa1000kPa)=0.0904MPa

Refer to Table A-13, obtain the values of below variables as in Table (I) at 10°C.

Pressure, MPa (x)Specific volume, m3/kg (y)
0.060.35048
0.0904?
0.100.20743

Write the formula of interpolation method of two variables at 10°C.

  y2=(x2x1)(y3y1)(x3x1)+y1        (II)

Here, the variables denote by x and y are pressure and specific volume.

Substitute 0.06 for x1, 0.0904 for x2, 0.10 for x3, 0.35048 for y1, and 0.20743 for y3 in Equation (II).

  y2=(0.09040.06)(0.207430.35048)(0.100.06)+0.35048=0.2418

Thus, the specific volume of refrigerant R-134a at the initial state of 90.4 kPa and 10°C is 0.2418m3/kg.

Refer to Table A-13, obtain the values of below variables as in Table (II) at 10°C.

Pressure, MPa (x)Enthalpy, kJ/kg (y)
0.06248.60
0.0904?
0.10247.51

Substitute 0.06 for x1, 0.0904 for x2, 0.10 for x3, 248.60 for y1, and 247.51 for y3 in Equation (II).

  y2=(0.09040.06)(247.51248.60)(0.100.06)+248.60=247.77

Thus, the enthalpy of refrigerant R-134a at the initial state of 90.4 kPa and 10°C is 247.77kJ/kg.

Apply spreadsheet and solve the final state specific volume at 15°C and 0.0904 MPa using interpolation method.

Refer to Table A-13, obtain the values of below variables as in Table (III) at 15°C and 0.06 MPa.

Temperature, °C (x)Specific volume, m3/kg (y)
100.37893
15?
200.39302

Substitute 10 for x1, 15 for x2, 20 for x3, 0.37893 for y1, and 0.39302 for y3 in Equation (II).

  y2=(1510)(0.393020.37893)(2010)+0.37893=0.386

Similarly, solve final state specific volume at 15°C and 0.10 MPa using interpolation method as 0.2294m3/kg.

Now use interpolation method again to solve the final state specific volume at 15°C. Refer to Table A-13, obtain the values of below variables as in Table (IV) at 15°C and 0.0904 MPa.

Pressure, MPa (x)Specific volume, m3/kg (y)
0.060.386
0.0904?
0.100.2294

Substitute 0.06 for x1, 0.0904 for x2, 0.10 for x3, 0.386 for y1, and 0.2294 for y3 in Equation (II).

  y2=(0.09040.06)(0.22940.386)(0.100.06)+0.386=0.267

Thus, the final state specific volume at 15°C and 90.4 kPa is 0.267m3/kg.

Apply the above steps to calculate the enthalpy at 15°C and 90.4 kPa using interpolation method as 268.19kJ/kg.

Calculate the initial volume of cylinder.

  ν1=mv1

Here, the initial state specific volume is v1.

Substitute 0.85 kg for m and 0.2418m3/kg for v1 in Equation (III).

  ν1=0.85kg(0.2418m3/kg)=0.20553m3

Calculate the final volume of cylinder.

  ν2=mv2

Here, the final state specific volume is v2.

Substitute 0.85 kg for m and 0.267m3/kg for ν2 in Equation (IV).

  ν2=0.85kg(0.267m3/kg)=0.22695m3

Calculate the change in the volume of cylinder.

  Δν=ν2ν1

Substitute 0.22695m3 for ν2 and 0.20553m3 for ν1 in Equation (V).

  Δν=0.22695m30.20553m3=0.02142m3

Thus, the change in the volume of the cylinder is 0.02142m3_.

(c)

To determine

The change in the enthalpy of the refrigerant R-134a.

(c)

Expert Solution
Check Mark

Explanation of Solution

Calculate the total enthalpy change of refrigerant R-134a.

  ΔH=m(h2h1)        (VI)

Here, enthalpy at initial state and final state are h1andh2 respectively.

Substitute 0.85 kg for m, 247.77kJ/kg for h1 and 268.19kJ/kg for h2 in equation (VI).

  ΔH=0.85kg(268.19kJ/kg247.77kJ/kg)=17.35kJ/kg

Thus, the change in the enthalpy of the refrigerant R-134a is 17.35kJ/kg_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 4 Solutions

FUND OF THERMAL-FLUID SCIENCES W/CONNEC

Ch. 4 - Prob. 11PCh. 4 - Prob. 12PCh. 4 - Prob. 13PCh. 4 - Does hfg change with pressure? How? Ch. 4 - Prob. 15PCh. 4 - Prob. 16PCh. 4 - Which process requires more energy: completely...Ch. 4 - In the absence of compressed liquid tables, how is...Ch. 4 - In 1775, Dr. William Cullen made ice in Scotland...Ch. 4 - Complete this table for H2O: Ch. 4 - Prob. 21PCh. 4 - Complete this table for H2O: Ch. 4 - Prob. 24PCh. 4 - Prob. 26PCh. 4 - Complete this table for refrigerant-134a: Ch. 4 - A 1.8-m3 rigid tank contains steam at 220°C....Ch. 4 - Prob. 29PCh. 4 - R-134a, whose specific volume is 0.6243 ft3/lbm,...Ch. 4 - Prob. 31PCh. 4 - Prob. 32PCh. 4 - Refrigerant-134a at 200 kPa and 25°C flows through...Ch. 4 - The average atmospheric pressure in Denver...Ch. 4 - Prob. 35PCh. 4 - Prob. 36PCh. 4 - One pound-mass of water fills a 2.4264-ft3...Ch. 4 - Prob. 38PCh. 4 - Prob. 39PCh. 4 - Prob. 40PCh. 4 - Prob. 41PCh. 4 - Prob. 42PCh. 4 - Water initially at 200 kPa and 300°C is contained...Ch. 4 - Saturated steam coming off the turbine of a steam...Ch. 4 - Water in a 5-cm-deep pan is observed to boil at...Ch. 4 - A cooking pan whose inner diameter is 20 cm is...Ch. 4 - Prob. 47PCh. 4 - Prob. 48PCh. 4 - Prob. 49PCh. 4 - Prob. 50PCh. 4 - A piston–cylinder device contains 0.005 m3 of...Ch. 4 - Prob. 53PCh. 4 - Prob. 54PCh. 4 - Prob. 55PCh. 4 - Prob. 57PCh. 4 - Prob. 58PCh. 4 - Prob. 59PCh. 4 - Prob. 60PCh. 4 - Prob. 61PCh. 4 - A rigid vessel contains 8 kg of refrigerant-134a...Ch. 4 - Prob. 63PCh. 4 - A piston–cylinder device initially contains 50 L...Ch. 4 - Prob. 65PCh. 4 - Prob. 66PCh. 4 - Prob. 67PCh. 4 - Prob. 68PCh. 4 - Prob. 69PCh. 4 - Prob. 70PCh. 4 - Prob. 71PCh. 4 - Prob. 72PCh. 4 - The air in an automobile tire with a volume of...Ch. 4 - The air in an automobile tire with a volume of...Ch. 4 - Prob. 75PCh. 4 - Prob. 76PCh. 4 - Prob. 77PCh. 4 - Prob. 78PCh. 4 - What is the principle of corresponding states? Ch. 4 - Prob. 80PCh. 4 - Prob. 81PCh. 4 - Prob. 82PCh. 4 - Prob. 84PCh. 4 - Prob. 85PCh. 4 - Prob. 86PCh. 4 - Prob. 87PCh. 4 - What is the percentage of error involved in...Ch. 4 - Prob. 89PCh. 4 - Prob. 90PCh. 4 - Prob. 91PCh. 4 - Prob. 92PCh. 4 - Prob. 93RQCh. 4 - Prob. 94RQCh. 4 - A tank contains argon at 600°C and 200 kPa gage....Ch. 4 - Prob. 96RQCh. 4 - Prob. 97RQCh. 4 - Prob. 98RQCh. 4 - Prob. 99RQCh. 4 - Prob. 100RQCh. 4 - Prob. 101RQCh. 4 - Prob. 102RQCh. 4 - A 4-L rigid tank contains 2 kg of saturated...Ch. 4 - The gage pressure of an automobile tire is...Ch. 4 - Prob. 105RQCh. 4 - Prob. 106RQCh. 4 - Prob. 107RQCh. 4 - Prob. 108RQCh. 4 - Prob. 109RQCh. 4 - Prob. 110RQCh. 4 - Prob. 111RQCh. 4 - Prob. 112RQ
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Thermodynamics - Chapter 3 - Pure substances; Author: Engineering Deciphered;https://www.youtube.com/watch?v=bTMQtj13yu8;License: Standard YouTube License, CC-BY