bartleby

Videos

Textbook Question
Book Icon
Chapter 4, Problem 4.8QP

A round aluminum alloy bar with a 0.25-in. diameter and a 1-in. gauge length was tested in tension to fracture according to ASTM E-8 method. The load and deformation data were as shown in Table P4.8.

Chapter 4, Problem 4.8QP, A round aluminum alloy bar with a 0.25-in. diameter and a 1-in. gauge length was tested in tension

Using a spreadsheet program, obtain the following:

a. A plot of the stress–strain relationship. Label the axes and show units.

b. A plot of the linear portion of the stress–strain relationship. Determine  modulus of elasticity using the best fit approach.

c. Proportional limit.

d. Yield stress at an offset strain of 0.002 in/in.

e. Initial tangent modulus.

f. If the specimen is loaded to 3200 lb only and then unloaded, what is the permanent change in gauge length?

g. When the applied load was 1239 lb, the diameter was measured as 0.249814 in. Determine Poisson’s ratio.

Blurred answer
Students have asked these similar questions
A round steel bar with a diameter of 12mm and a gauge length of 0.5 mm was subjected to tension to rupture following ASTM E-8 test procedure. The load and deformation data were as shown in Table. Using a spreadsheet program obtain the following: A plot of the stress–strain relationship. Label the axes and show units. A plot of the linear portion of the stress–strain relationship. Determine modulus of elasticity using the best fit approach. Proportional limit. Yield stress. Ultimate strength. When the applied load was 18kN, the diameter was measured as12.7mm Determine Poisson’s ratio. After the rod was broken, the two parts were put together and the diameter at the neck was measured as 10.6 mm. What is the true stress value at fracture? Is the true stress at fracture larger or smaller than the engineering stress at fracture? Why? Do you expect the true strain at fracture to be larger or smaller than the engineering strain at fracture? Why?
An ASTM A615 grade 60 number 10 rebar with a gauge length of 8 in. was subjected to tension to fracture according to ASTM E-8 method. The load and deformation data were as shown in Table .Using a spreadsheet program, obtain the following:a. A plot of the stress–strain relationship. Label the axes and show units.b. A plot of the linear portion of the stress–strain relationship. Determine modulus of elasticity using the best-fit approach.c. Proportional limit.
A round aluminum alloy bar with a 0.25-in. diameter and a 1-in. gauge length was tested in tension to fracture according to ASTM E-8 method. The load and deformation data were as shown in Table P4.8.Using a spreadsheet program, obtain the following: a. A plot of the stress–strain relationship. Label the axes and show units. b. A plot of the linear portion of the stress–strain relationship. Determine modulus of elasticity using the best fit approach. c. Proportional limit. d. Yield stress at an offset strain of 0.002 in/in. e. Initial tangent modulus. f. If the specimen is loaded to 3200 lb only and then unloaded, what is the permanent change in gauge length? g. When the applied load was 1239 lb, the diameter was measured as 0.249814 in. Determine Poisson’s ratio.
Knowledge Booster
Background pattern image
Civil Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Steel Design (Activate Learning with these NEW ti...
Civil Engineering
ISBN:9781337094740
Author:Segui, William T.
Publisher:Cengage Learning
Text book image
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning
Material Properties 101; Author: Real Engineering;https://www.youtube.com/watch?v=BHZALtqAjeM;License: Standard YouTube License, CC-BY