EBK CHEMISTRY: THE MOLECULAR SCIENCE
EBK CHEMISTRY: THE MOLECULAR SCIENCE
5th Edition
ISBN: 8220100478642
Author: STANITSKI
Publisher: YUZU
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 4, Problem 62QRT

(a)

Interpretation Introduction

Interpretation:

The enthalpy change for breaking of all bonds present in all reactants of given reaction has to be calculated.

(a)

Expert Solution
Check Mark

Answer to Problem 62QRT

The enthalpy change value for breaking of bonds for bromine reaction is 629 kJ and the enthalpy change value for breaking of bonds for Iodine reaction is 587 kJ.

Explanation of Solution

The reactions of molecular hydrogen with bromine and iodine are as follows,

    H2+Br2 2HBrH2+I2 2HI

Above both reactions, involves breaking of one H-H and one halogen-halogen bond.

    For H2+Br2 2HBrΔrHreactants = (ΔbHH-H)+(ΔbHhalogen-halogen)ΔrHreactants = (436 kJ/mol)+(193 kJ/mol)=629 kJ

    For H2+I2 2HIΔrHreactants = (ΔbHH-H)+(ΔbHhalogen-halogen)ΔrHreactants = (436 kJ/mol)+(151 kJ/mol)=587 kJ

(b)

Interpretation Introduction

Interpretation:

The enthalpy change for forming of all bonds present in all products of given reaction has to be calculated.

Concept Introduction:

Refer part (a).

(b)

Expert Solution
Check Mark

Answer to Problem 62QRT

The enthalpy change value for forming of bonds in bromine reaction is 732 kJ and the enthalpy change value for forming of bonds in iodine reaction is -598 kJ.

Explanation of Solution

The reaction of molecular hydrogen with fluorine and chlorine is as follows,

    H2+Br2 2HBrH2+I2 2HI

Above both reactions involve formation of 2 hydrogen-halogen bonds. The ΔrHproducts value should be in negative since enthalpy of bond forming should be in opposite sign of the enthalpy of bond breaking.

    For H2+Br2 2HBrΔrHproducts = -2(ΔbHH-halogen)= -2(366 kJ/mol)= -732 kJ

    For H2+I2 2HIΔrHproducts = -2(ΔbHH-halogen) = -2(299 kJ/mol)= -598 kJ

(c)

Interpretation Introduction

Interpretation:

The enthalpy change given reaction has to be calculated.

Concept Introduction:

The enthalpy change in a system Ηsys) can be calculated by the following equation.

  ΔHrxn = ΔH°produdcts- ΔH°reactants

Where,

  ΔH°reactants is the standard enthalpy of the reactants

  ΔH°produdcts is the standard enthalpy of the products

(c)

Expert Solution
Check Mark

Answer to Problem 62QRT

The enthalpy change value for bromine reaction is 103 kJ and the enthalpy change value for iodine reaction is -11 kJ.

Explanation of Solution

The reactions of molecular hydrogen with bromine and iodine are as follows,

    H2+Br2 2HBrH2+I2 2HI

The enthalpy change value for each reaction is determined by considering the formula, ΔrHtotal =ΔrHreactants+ΔrHproducts.

    For H2+Br2 2HBrΔrHtotal =ΔrHreactants+ΔrHproducts = 629kJ+(732 kJ)= - 103 kJ

    For H2+I2 2HIΔrHtotal =ΔrHreactants+ΔrHproducts = 587 kJ+(598 kJ)11 kJ

(d)

Interpretation Introduction

Interpretation:

From the two given reactions, the exothermic reaction has to be identified.

Concept Introduction:

Enthalpy is the amount energy absorbed or released in a process. Under constant pressure conditions the enthalpy change will be equal to molar q.

Exothermic reaction: Exothermic reactions are those in which evolution of heat takes place during any chemical reaction. They release heat because the reactant molecules require less heat for breakage of bonds than the product molecules.

Endothermic reaction: Endothermic reactions are those in which heat is absorbed during any chemical reaction. In such type of reactions, external energy is needed.

(d)

Expert Solution
Check Mark

Answer to Problem 62QRT

The reaction between molecular hydrogen and bromine is more exothermic than the other one.

Explanation of Solution

The reaction of molecular hydrogen with bromine is more exothermic since 103 kJ is more negative than the value 11 kJ obtained from reaction between hydrogen and iodine.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 4 Solutions

EBK CHEMISTRY: THE MOLECULAR SCIENCE

Ch. 4.5 - Prob. 4.6PSPCh. 4.5 - Prob. 4.6ECh. 4.5 - Assume you have 1 cup of ice (237 g) at 0.0 C....Ch. 4.6 - Prob. 4.9CECh. 4.6 - Prob. 4.10CECh. 4.6 - Prob. 4.11ECh. 4.6 - The reaction enthalpy for sublimation of 1 mol...Ch. 4.6 - Prob. 4.12ECh. 4.6 - Prob. 4.8PSPCh. 4.7 - Prob. 4.13CECh. 4.7 - Prob. 4.14CECh. 4.8 - Prob. 4.9PSPCh. 4.8 - Prob. 4.15CECh. 4.8 - Prob. 4.10PSPCh. 4.8 - Prob. 4.16CECh. 4.8 - Prob. 4.17ECh. 4.9 - When iron is obtained from iron ore, an important...Ch. 4.10 - Write an appropriate thermochemical expression in...Ch. 4.10 - Prob. 4.18CECh. 4.10 - Prob. 4.13PSPCh. 4.10 - Use data from Table 4.2 to calculate the standard...Ch. 4.11 - Prob. 4.15PSPCh. 4.11 - Correlate the fuel values and caloric values...Ch. 4.11 - Prob. 4.20ECh. 4.11 - Prob. 4.21ECh. 4 - Prob. 1QRTCh. 4 - For each situation, define a system and its...Ch. 4 - What is the value of the standard formation...Ch. 4 - Prob. 4QRTCh. 4 - Prob. 5QRTCh. 4 - Name two exothermic processes and two endothermic...Ch. 4 - Prob. 7QRTCh. 4 - Prob. 8QRTCh. 4 - (a) A 2-inch piece of two-layer chocolate cake...Ch. 4 - Prob. 10QRTCh. 4 - Melting lead requires 5.50 cal/g. Calculate how...Ch. 4 - Prob. 12QRTCh. 4 - Prob. 13QRTCh. 4 - Prob. 14QRTCh. 4 - Prob. 15QRTCh. 4 - Analyze transfer of energy from one form to...Ch. 4 - Prob. 17QRTCh. 4 - Suppose that you are studying kinetic energy of...Ch. 4 - Solid ammonium chloride is added to water in a...Ch. 4 - Prob. 20QRTCh. 4 - Prob. 21QRTCh. 4 - Prob. 22QRTCh. 4 - Prob. 23QRTCh. 4 - Prob. 24QRTCh. 4 - Prob. 25QRTCh. 4 - Prob. 26QRTCh. 4 - The specific heat capacity of benzene, C6H6, is...Ch. 4 - The specific heat capacity of carbon...Ch. 4 - Prob. 29QRTCh. 4 - Prob. 30QRTCh. 4 - A piece of iron (400. g) is heated in a flame and...Ch. 4 - Prob. 32QRTCh. 4 - Prob. 33QRTCh. 4 - Prob. 34QRTCh. 4 - Prob. 35QRTCh. 4 - Prob. 36QRTCh. 4 - Prob. 37QRTCh. 4 - Prob. 38QRTCh. 4 - Prob. 39QRTCh. 4 - Calculate the quantity of heating required to...Ch. 4 - Prob. 41QRTCh. 4 - Prob. 42QRTCh. 4 - Prob. 43QRTCh. 4 - Prob. 44QRTCh. 4 - Prob. 45QRTCh. 4 - Calcium carbide, CaC2, is manufactured by reducing...Ch. 4 - Prob. 47QRTCh. 4 - Prob. 48QRTCh. 4 - Prob. 49QRTCh. 4 - Given the thermochemical expression CaO(s) + 3C(s)...Ch. 4 - Prob. 51QRTCh. 4 - Prob. 52QRTCh. 4 - Isooctane (2,2,4-trimethylpentane), one of the...Ch. 4 - Prob. 54QRTCh. 4 - Gasohol, a mixture of gasoline and ethanol,...Ch. 4 - White phosphorus, P4, ignites in air to produce...Ch. 4 - Prob. 57QRTCh. 4 - Prob. 58QRTCh. 4 - Which molecule, HF, HCl, HBr, or HI, has the...Ch. 4 - Which molecule, F2, Cl2, Br2, or I2, has the...Ch. 4 - For the reactions of molecular hydrogen with...Ch. 4 - Prob. 62QRTCh. 4 - A diamond can be considered a giant all-carbon...Ch. 4 - Prob. 64QRTCh. 4 - Prob. 65QRTCh. 4 - Prob. 66QRTCh. 4 - Prob. 67QRTCh. 4 - A 0.692-g sample of glucose, C6H12O6, is burned in...Ch. 4 - Benzoic acid, C7H6O2, occurs naturally in many...Ch. 4 - Prob. 70QRTCh. 4 - Prob. 71QRTCh. 4 - Prob. 72QRTCh. 4 - Three reactions very important to the...Ch. 4 - Prob. 74QRTCh. 4 - Prob. 75QRTCh. 4 - Prob. 76QRTCh. 4 - Prob. 77QRTCh. 4 - Prob. 78QRTCh. 4 - We burn 3.47 g lithium in excess oxygen at...Ch. 4 - Prob. 80QRTCh. 4 - Prob. 81QRTCh. 4 - Prob. 82QRTCh. 4 - The reaction enthalpy for oxidation of styrene,...Ch. 4 - Oxygen is not normally found in positive oxidation...Ch. 4 - Iron can react with oxygen to give iron(III)...Ch. 4 - The formation of aluminum oxide from its elements...Ch. 4 - Prob. 87QRTCh. 4 - If you want to convert 56.0 g ice (at 0 °C) to...Ch. 4 - Prob. 89QRTCh. 4 - Prob. 90QRTCh. 4 - Prob. 91QRTCh. 4 - Prob. 92QRTCh. 4 - Prob. 93QRTCh. 4 - Prob. 94QRTCh. 4 - Prob. 95QRTCh. 4 - Prob. 96QRTCh. 4 - Prob. 97QRTCh. 4 - Prob. 98QRTCh. 4 - Prob. 99QRTCh. 4 - Prob. 100QRTCh. 4 - Prob. 101QRTCh. 4 - Prob. 102QRTCh. 4 - Prob. 103QRTCh. 4 - Prob. 104QRTCh. 4 - Prob. 105QRTCh. 4 - Prob. 106QRTCh. 4 - The specific heat capacity of copper is 0.385 J g1...Ch. 4 - Consider this graph, which presents data for a...Ch. 4 - Prob. 109QRTCh. 4 - The sketch shows two identical beakers with...Ch. 4 - Prob. 111QRTCh. 4 - Prob. 112QRTCh. 4 - Prob. 113QRTCh. 4 - Prob. 114QRTCh. 4 - Prob. 115QRTCh. 4 - Prob. 116QRTCh. 4 - Prob. 117QRTCh. 4 - Prob. 118QRTCh. 4 - Prob. 119QRTCh. 4 - Prob. 120QRTCh. 4 - Prob. 121QRTCh. 4 - Prob. 122QRTCh. 4 - Prob. 123QRTCh. 4 - Prob. 124QRTCh. 4 - Prob. 4.ACPCh. 4 - Prob. 4.BCPCh. 4 - Prob. 4.CCPCh. 4 - Prob. 4.DCPCh. 4 - Prob. 4.ECPCh. 4 - Prob. 4.FCP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Calorimetry Concept, Examples and Thermochemistry | How to Pass Chemistry; Author: Melissa Maribel;https://www.youtube.com/watch?v=nSh29lUGj00;License: Standard YouTube License, CC-BY