Loose Leaf For Foundations Of Materials Science And Engineering
Loose Leaf For Foundations Of Materials Science And Engineering
6th Edition
ISBN: 9781260049169
Author: William Smith, Javad Hashemi, Prof.
Publisher: McGraw-Hill Education
bartleby

Videos

Question
Book Icon
Chapter 4.8, Problem 65SEP
To determine

Explain how you would accomplish an application that requires that the diameter of the bar be reduced and the grain dimensions are longer along the longitudinal axis of the bar.

Blurred answer
Students have asked these similar questions
The lower yield point for a certain plain carbon steelbar is found to be 135 MPa, while a second bar of the samecomposition yields at 260 MPa. Metallographic analysisshows that the average grain diameter is 50μm in the firstbar and 8μm in the second bar.a. Predict the grain diameter needed to cause a loweryield point of 205 MPa.b. If the steel could be fabricated to form a stablegrain structure of 500 nm grains, what strengthwould be predicted?c. Why might you expect the upper yield point to bemore alike in the first two bars than the lower yieldpoint?
Q3 contd. (d) The yield strength values of pure aluminium (Al) and pure copper (Cu) are 25 MPa and 20 MPa, respectively; whereas the yield strength values of cold rolled Al-Mn-Mg alloy and cast 60-40 Brass (60% Cu, 40% Zn) are 200 MPa and 105 MPa, respectively. With aid of schematics, explain the main mechanisms account for the increases in the strengths. (e) A cylindrical tie rod with a diameter of 18.4 mm is subjected to cyclic loading. The stress range is +/- 200 kN. Figure Q3.3 shows the S-N curve of the material of which the rod is made, how many cycles will this rod survive? Stress amplitude O₂ (MPa) 1500 1400 1300 1200 1100 1000 900 800 700 600 500 400 10² 10³ 104 4340 low-alloy steel Stress ratio = -1 Fig. Q3.3 105 106 Number of cycles to failure, Nf 107 108
A hypothetical metal alloy has a grain diameter of 2.4 x 10-2 mm. After a heat treatment at 575°C for 500 min, the grain diameter has increased to 8.1× 10-2 mm. Compute the time required for a specimen of this same material (i.e., do = 2.4 × 10-2 mm) to achieve a grain diameter of 5.5 × 10-2 mm while being heated at 575°C. Assume the n grain diameter exponent has a value of 2.2.

Chapter 4 Solutions

Loose Leaf For Foundations Of Materials Science And Engineering

Ch. 4.8 - Prob. 11KCPCh. 4.8 - Prob. 12KCPCh. 4.8 - Distinguish between a substitutional solid...Ch. 4.8 - What are the conditions that are favorable for...Ch. 4.8 - Prob. 15KCPCh. 4.8 - Prob. 16KCPCh. 4.8 - Prob. 17KCPCh. 4.8 - Prob. 18KCPCh. 4.8 - Describe the structure of a grain boundary. Why...Ch. 4.8 - Describe and illustrate the following planar...Ch. 4.8 - Prob. 21KCPCh. 4.8 - Describe the optical metallography technique. What...Ch. 4.8 - Prob. 23KCPCh. 4.8 - Prob. 24KCPCh. 4.8 - Prob. 25KCPCh. 4.8 - Prob. 26KCPCh. 4.8 - Prob. 27KCPCh. 4.8 - Prob. 28KCPCh. 4.8 - Prob. 29KCPCh. 4.8 - Prob. 30KCPCh. 4.8 - Prob. 31KCPCh. 4.8 - Calculate the size (radius) of the critically...Ch. 4.8 - Prob. 33AAPCh. 4.8 - Prob. 34AAPCh. 4.8 - Calculate the number of atoms in a critically...Ch. 4.8 - Prob. 36AAPCh. 4.8 - Prob. 37AAPCh. 4.8 - Prob. 38AAPCh. 4.8 - Prob. 39AAPCh. 4.8 - Prob. 40AAPCh. 4.8 - Prob. 41AAPCh. 4.8 - Prob. 42AAPCh. 4.8 - Determine, by counting, the ASTM grain-size number...Ch. 4.8 - Prob. 44AAPCh. 4.8 - For the grain structure in Problem 4.43, estimate...Ch. 4.8 - Prob. 46AAPCh. 4.8 - Prob. 47SEPCh. 4.8 - Prob. 48SEPCh. 4.8 - Prob. 49SEPCh. 4.8 - Prob. 50SEPCh. 4.8 - In Chapter 3 (Example Problem 3.11), we calculated...Ch. 4.8 - Prob. 52SEPCh. 4.8 - Prob. 53SEPCh. 4.8 - Prob. 54SEPCh. 4.8 - Prob. 55SEPCh. 4.8 - Prob. 56SEPCh. 4.8 - Prob. 57SEPCh. 4.8 - Prob. 58SEPCh. 4.8 - Prob. 59SEPCh. 4.8 - Prob. 60SEPCh. 4.8 - Prob. 61SEPCh. 4.8 - Prob. 62SEPCh. 4.8 - Prob. 63SEPCh. 4.8 - Prob. 64SEPCh. 4.8 - Prob. 65SEPCh. 4.8 - Prob. 66SEP
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Understanding Failure Theories (Tresca, von Mises etc...); Author: The Efficient Engineer;https://www.youtube.com/watch?v=xkbQnBAOFEg;License: Standard youtube license