Classical Dynamics of Particles and Systems
Classical Dynamics of Particles and Systems
5th Edition
ISBN: 9780534408961
Author: Stephen T. Thornton, Jerry B. Marion
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Students have asked these similar questions
A uniform disk of radius R = 0.3 meters and mass M = 0.8 kg can oscillate in the vertical plane, around an axis that passes through the pin, indicated in the figure, which is located at a distance “d” from the center of the disk. What is the value of “d” so that the period of oscillation is minimum?
A pointlike body of mass m made of lead is fixed inside a homogeneous solid sphere of radius R and mass m at distance R/2 from the center of the sphere. This body is placed on a horizontal rough surface. Find the period of small oscillations of the sphere around its equilibrium position. (The sphere rolls without slipping on the surface. The moment of inertia of a homogeneous sphere of mass m and radius R is 2mR2/5.)
A ball attached to a spring is raised 2 feet and released with an initial vertical velocity of 3 feet per second. The distance of the ball from its rest position after t seconds is given by d = 2 cos t + 3 sin t. Show that 2 cos t + 3 sin t = √13 cos(t - θ),where θ lies in quadrant I and tanθ =( 3/2). Use the identity to find the amplitude and the period of the ball’s motion.
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
28.1 Rigid Bodies; Author: MIT OpenCourseWare;https://www.youtube.com/watch?v=u_LAfG5uIpY;License: Standard YouTube License, CC-BY