Pearson eText -- Physics for Scientists and Engineers with Modern Physics -- Instant Access (Pearson+)
Pearson eText -- Physics for Scientists and Engineers with Modern Physics -- Instant Access (Pearson+)
5th Edition
ISBN: 9780137488179
Author: Douglas Giancoli
Publisher: PEARSON+
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 5, Problem 84GP

A flat puck (mass M) is revolved in a circle on a frictionless air hockey table top, and is held in this orbit by a light cord which is connected to a dangling mass (mass m) through a central hole as shown in Fig. 5–48. Show that the speed of the puck is given by υ = m g R / M .

Chapter 5, Problem 84GP, A flat puck (mass M) is revolved in a circle on a frictionless air hockey table top, and is held in

FIGURE 5–48 Problem 80.

Blurred answer
02:39
Students have asked these similar questions
(a) Evaluate the gravitational potential energy between two 5.00-kg spherical steel balls separated by a center-tocenter distance of 15.0 cm. (b) Assuming that they are both initially at rest relative to each other in deep space, use conservation of energy to find how fast will they be traveling upon impact. Each sphere has a radius of 5.10 cm.
(a) Evaluate the gravitational potential energy (in J) between two 9.00 kg spherical steel balls separated by a center-to-center distance of 23.0 cm. -2.349E-8 J (b) Assuming that they are both initially at rest relative to each other in deep space, use conservation of energy to find how fast (in m/s) will they each be traveling upon impact. Each sphere has a radius of 5.50 cm. 10.90 X m/s
(a) Imagine that a space probe could be fired as a projectile from the Earth's surface with an initial speed of 5.48 x 10 m/s relative to the Sun. What would its speed be when it is very far from the Earth (in m/s)? Ignore atmospheric friction, the effects of other planets, and the rotation of the Earth. (Consider the mass of the Sun in your calculations.) Your response differs from the correct answer by more than 10%. Double check your calculations. m/s (b) What If? The speed provided in part (a) is very difficult to achieve technologically. Often, Jupiter is used as a "gravitational slingshot" to increase the speed of a probe to the escape speed from the solar system, which is 1.85 x 10 m/s from a point on Jupiter's orbit around the Sun (if Jupiter is not nearby). If the probe is launched from the Earth's surface at a speed of 4.10 x 10 m/s relative to the Sun, what is the increase in speed needed from the gravitational slingshot at Jupiter for the space probe to escape the solar…

Chapter 5 Solutions

Pearson eText -- Physics for Scientists and Engineers with Modern Physics -- Instant Access (Pearson+)

Ch. 5 - A block is given a push so that it slides up a...Ch. 5 - Cross-country skiers prefer their skis to have a...Ch. 5 - Prob. 4QCh. 5 - It is not easy to walk on an icy sidewalk without...Ch. 5 - Why is the stopping distance of a truck much...Ch. 5 - A car rounds a curve at a steady 50 km/h. If it...Ch. 5 - Will the acceleration of a car be the same when a...Ch. 5 - Describe all the forces acting on a child riding a...Ch. 5 - A child on a sled comes flying over the crest of a...Ch. 5 - Sometimes it is said that water is removed from...Ch. 5 - Technical reports often specify only the rpm for...Ch. 5 - A girl is whirling a ball on a string around her...Ch. 5 - The game of tetherball is played with a ball tied...Ch. 5 - Astronauts who spend long periods in outer space...Ch. 5 - A bucket of water can be whirled in a vertical...Ch. 5 - A car maintains a constant speed v as it traverses...Ch. 5 - Why do bicycle riders lean in when rounding a...Ch. 5 - Why do airplanes bank when they turn? How would...Ch. 5 - For a drag force of the form F = bv, what are the...Ch. 5 - Suppose two forces act on an object, one force...Ch. 5 - Prob. 2MCQCh. 5 - Prob. 3MCQCh. 5 - Prob. 4MCQCh. 5 - Prob. 5MCQCh. 5 - Prob. 6MCQCh. 5 - Prob. 7MCQCh. 5 - Prob. 8MCQCh. 5 - Prob. 9MCQCh. 5 - Prob. 12MCQCh. 5 - Prob. 13MCQCh. 5 - Prob. 1PCh. 5 - Prob. 2PCh. 5 - (I) Suppose you are standing on a train...Ch. 5 - (I) The coefficient of static friction between...Ch. 5 - Prob. 5PCh. 5 - Prob. 6PCh. 5 - (II) A car can decelerate at 3.80 m/s2 without...Ch. 5 - Prob. 8PCh. 5 - Prob. 9PCh. 5 - (II) A box is given a push so that it slides...Ch. 5 - (II) A skier moves down a 27 slope at constant...Ch. 5 - (II) A wet bar of soap slides freely down a ramp...Ch. 5 - Prob. 13PCh. 5 - Prob. 14PCh. 5 - Prob. 15PCh. 5 - (II) Police investigators, examining the scene of...Ch. 5 - (II) Piles of snow on slippery roofs can become...Ch. 5 - Prob. 18PCh. 5 - (II) Two crates, of mass 65 kg and 125 kg, are in...Ch. 5 - Prob. 20PCh. 5 - (II) A crate is given an initial speed of 3.0 m/s...Ch. 5 - (II) A flatbed truck is carrying a heavy crate....Ch. 5 - Prob. 23PCh. 5 - Prob. 24PCh. 5 - (II) A package of mass m is dropped vertically...Ch. 5 - (II) Two masses mA = 2.0 kg and mB = 5.0 kg are on...Ch. 5 - Prob. 27PCh. 5 - (II) (a) Suppose the coefficient of kinetic...Ch. 5 - Prob. 29PCh. 5 - (II) For two blocks, connected by a cord and...Ch. 5 - Prob. 31PCh. 5 - (III) A 3.0-kg block sits on top of a 5.0-kg block...Ch. 5 - (III) A 4.0-kg block is stacked on top of a...Ch. 5 - (III) A small block of mass m rests on the rough...Ch. 5 - Prob. 35PCh. 5 - Prob. 36PCh. 5 - Prob. 37PCh. 5 - (I) A jet plane traveling 1890 km/h (525 m/s)...Ch. 5 - Prob. 39PCh. 5 - Prob. 40PCh. 5 - Prob. 41PCh. 5 - (II) How fast (in rpm) must a centrifuge rotate if...Ch. 5 - Prob. 43PCh. 5 - (II) Redo Example 511, precisely this time, by not...Ch. 5 - (II) Highway curves are marked with a suggested...Ch. 5 - Prob. 46PCh. 5 - (II) At what minimum speed must a roller coaster...Ch. 5 - Prob. 48PCh. 5 - Prob. 49PCh. 5 - Prob. 50PCh. 5 - Prob. 51PCh. 5 - Prob. 52PCh. 5 - Prob. 53PCh. 5 - Prob. 54PCh. 5 - Prob. 55PCh. 5 - Prob. 56PCh. 5 - Prob. 57PCh. 5 - (II) Two blocks with masses mA and mB, are...Ch. 5 - Prob. 59PCh. 5 - Prob. 60PCh. 5 - (II) A pilot performs an evasive maneuver by...Ch. 5 - (III) The position of a particle moving in the xy...Ch. 5 - (III) If a curve with a radius of 85 m is properly...Ch. 5 - Prob. 65PCh. 5 - Prob. 67PCh. 5 - Prob. 68PCh. 5 - Prob. 69PCh. 5 - (III) An object of mass m is constrained to move...Ch. 5 - (I) Use dimensional analysis (Section 17) in...Ch. 5 - (II) The terminal velocity of a 3 105 kg raindrop...Ch. 5 - (III) Determine a formula for the position and...Ch. 5 - (III) The drag force on large objects such as...Ch. 5 - (II) An object moving vertically has v=v0at t = 0....Ch. 5 - Prob. 77PCh. 5 - Prob. 78PCh. 5 - (III) A motorboat traveling at a speed of 2.4 m/s...Ch. 5 - A coffee cup on the horizontal dashboard of a car...Ch. 5 - Prob. 81GPCh. 5 - Prob. 82GPCh. 5 - Prob. 83GPCh. 5 - A flat puck (mass M) is revolved in a circle on a...Ch. 5 - In a Rotor-ride at a carnival, people rotate in a...Ch. 5 - Prob. 86GPCh. 5 - Prob. 87GPCh. 5 - The 70.0-kg climber in Fig. 550 is supported in...Ch. 5 - A small mass m is set on the surface of a sphere,...Ch. 5 - Prob. 90GPCh. 5 - Prob. 91GPCh. 5 - Prob. 92GPCh. 5 - Prob. 93GPCh. 5 - Prob. 94GPCh. 5 - Prob. 95GPCh. 5 - A car is heading down a slippery road at a speed...Ch. 5 - Prob. 97GPCh. 5 - A banked curve of radius R in a new highway...Ch. 5 - Earth is not quite an inertial frame. We often...Ch. 5 - Prob. 100GPCh. 5 - Prob. 101GPCh. 5 - A car starts rolling down a 1-in-4 hill (1-in-4...Ch. 5 - The sides of a cone make an angle with the...Ch. 5 - Prob. 104GPCh. 5 - A ball of mass m = 1.0 kg at the end of a thin...Ch. 5 - Prob. 106GP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Gravitational Force (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=pxp1Z91S5uQ;License: Standard YouTube License, CC-BY