EBK NUMERICAL METHODS FOR ENGINEERS
EBK NUMERICAL METHODS FOR ENGINEERS
7th Edition
ISBN: 9780100254145
Author: Chapra
Publisher: YUZU
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 6, Problem 16P

(a) Apply the Newton-Raphson method to the function f ( x ) =  tanh ( x 2 9 ) to evaluate its known real root at x = 3 . Use an initial guess of x 0 = 3.2 and take a minimum of four iterations. (b) Did the method exhibit convergence onto its real root? Sketch the plot with the results for each iteration shown.

Blurred answer
Students have asked these similar questions
A root of the function f(x) = x3 – 10x² +5 lies close to x = 0.7. Doing three iterations, compute this root using the Newton- Raphson method with an initial guess of x=1). Newton-Raphson iterative equation is given as: f(x;) Xi+1 = Xị - f'(xi)
For the DE: dy/dx=2x-y    y(0)=2     with h=0.2, solve for y using each method below in the range of 0 <= x <= 3: Q1) Using Matlab to employ the Euler Method (Sect 2.4)  Q2) Using Matlab to employ the Improved Euler Method (Sect 2.5 close all clear all % Let's program exact soln for i=1:5 x_exact(i)=0.5*i-0.5; y_exact(i)=-x_exact(i)-1+exp(x_exact(i)); end plot(x_exact,y_exact,'b') % now for Euler's h=0.5 x_EM(1)=0; y_EM(1)=0; for i=2:5 x_EM(i)=x_EM(i-1)+h; y_EM(i)=y_EM(i-1)+(h*(x_EM(i-1)+y_EM(i-1))); end hold on plot (x_EM,y_EM,'r') % Improved Euler's Method h=0.5 x_IE(1)=0; y_IE(1)=0; for i=2:1:5     kA=x_IE(i-1)+y_IE(i-1);     u=y_IE(i-1)+h*kA;     x_IE(i)=x_IE(i-1)+h;     kB=x_IE(i)+u;     k=(kA+kB)/2;     y_IE(i)=y_IE(i-1)+h*k; end hold on plot(x_IE,y_IE,'k')
Find the three unknown on this problems using Elimination Method and Cramer's Rule. Attach your solutions and indicate your final answer. Problem 1. 7z 5y 3z 16 %3D 3z 5y + 2z -8 %3D 5z + 3y 7z = 0 Problem 2. 4x-2y+3z 1 *+3y-4z -7 3x+ y+2z 5

Chapter 6 Solutions

EBK NUMERICAL METHODS FOR ENGINEERS

Additional Engineering Textbook Solutions

Find more solutions based on key concepts
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Finding Local Maxima and Minima by Differentiation; Author: Professor Dave Explains;https://www.youtube.com/watch?v=pvLj1s7SOtk;License: Standard YouTube License, CC-BY