Principles of Physics
Principles of Physics
5th Edition
ISBN: 9781133110934
Author: Raymond A. Serway
Publisher: CENGAGE L
bartleby

Videos

Question
Book Icon
Chapter 6, Problem 65P

(a)

To determine

The extension of the spring for a mass of m.

(a)

Expert Solution
Check Mark

Answer to Problem 65P

The extension of the spring for a mass of m is x=4π2mL0/T2k4π2mL0/T2_.

Explanation of Solution

Write the expression for centripetal force of the mass m attached at the end of the spring.

    F=mv2r        (I)

Here, F is the centripetal force, m is the mass, v is the velocity, r is the radius of the orbit.

Write the expression for velocity in terms of time period.

    v=2πrT        (II)

Here, v is the velocity, r is the radius of the orbit, and T is the time period.

Write the expression for force from hooks law.

    F=kx        (III)

Here, F is the force, k is the spring constant, and x is the distance.

Use equation (II) and (III) in equation (I) and rearrange.

    kx=m(2πrT)2rkT2x=4π2mr        (IV)

Write the expression for radius of the pluck’s motion.

    r=L0+x        (V)

Use equation (V) in equation (IV), to find x.

    kT2x=4π2m(L0+x)kx=(4π2mL0)T2+x(4π2m)T2x(k4π2mT2)=4π2mL0T2x=4π2mL0/T2k4π2mL0/T2        (VI)

Conclusion:

Therefore, the extension of the spring for a mass of m is x=4π2mL0/T2k4π2mL0/T2_.

(b)

To determine

The extension of the spring for the mass 0.0700kg.

(b)

Expert Solution
Check Mark

Answer to Problem 65P

The extension of the spring for the mass 0.0700kg is 0.0951m_.

Explanation of Solution

Substitute 4.30N/m for k, 0.155m for L0, 1.30s for T, in equation (VI), to find x.

    x=4(3.14)2(0.155m)m/(1.30s)24.30N/m4(3.14)2m(0.155m)/(1.30s)2=(3.62m/s2)m4.30kg/s2(23.361/s2)m=(3.62m)m[4.30kg(23.36)]m1/s21/s2=(3.62m)m4.30kg(23.4)m        (VII)

Conclusion:

Substitute 0.070kg for m in equation (VII), to find x.

    x=(3.62m)(0.070kg)4.30kg(23.4)(0.070kg)=0.0951m

Therefore, the extension of the spring for the mass 0.0700kg is 0.0951m_.

(c)

To determine

The extension of the spring for the mass 0.140kg.

(c)

Expert Solution
Check Mark

Answer to Problem 65P

The extension of the spring for the mass 0.140kg is 0.492m_.

Explanation of Solution

From equation (VII).

    x=(3.62m)m4.30kg(23.4)m

Conclusion:

Substitute 0.140kg for m in equation (VII), to find x.

    x=(3.62m)(0.140kg)4.30kg(23.36)(0.140kg)=0.492m

Therefore, the extension of the spring for the mass 0.140kg is 0.492m_.

(d)

To determine

The extension of the spring for the mass 0.180kg.

(d)

Expert Solution
Check Mark

Answer to Problem 65P

The extension of the spring for the mass 0.180kg is 6.85m_.

Explanation of Solution

From equation (VII).

    x=(3.62m)m4.30kg(23.4)m

Conclusion:

Substitute 0.180kg for m in equation (VII), to find x.

    x=(3.62m)(0.180kg)4.30kg(23.36)(0.180kg)=0.6520.0952m=6.85m

Therefore, the extension of the spring for the mass 0.180kg is 6.85m_.

(e)

To determine

The extension of the spring for the mass 0.190kg.

(e)

Expert Solution
Check Mark

Answer to Problem 65P

For the mass 0.190kg the spring cannot constrain the motion, this situation is impossible.

Explanation of Solution

From equation (VII) the spring extension is given by

    x=(3.62m)m4.30kg(23.4)m

Conclusion:

Substitute 0.190kg for m in equation (VII), to find x.

    x=(3.62m)(0.190kg)4.30kg(23.36)(0.190kg)=0.6520m=

Therefore, For the mass 0.190kg the extension of the spring goes to infinity. The spring cannot constrain the motion, this situation is impossible

(f)

To determine

To explain the pattern of variation of x as it depends on m.

(f)

Expert Solution
Check Mark

Answer to Problem 65P

The extension of the spring is directly proportional to the mass m for the mass in few grams. For the mass 0.184kg and more the extension starts to diverge to infinity.

Explanation of Solution

The extension of the spring is directly proportional to the mass m, for the lighter mass in few grams. When the mass is further more increased from 0.184kg the extension starts to diverge to infinity.

Conclusion:

Therefore, the extension of the spring is directly proportional to the mass m for the mass in few grams. For the mass 0.184kg and more the extension starts to diverge to infinity.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
To form a pendulum, a 0.092 kg ball is attached to one end of a rod of length 0.62 m and negligible mass, and the other end of the rod is mounted on a pivot. The rod is rotated until it is straight up, and then it is released from rest so that it swings down around the pivot. When the ball reaches its lowest point, what are (a) its speed and (b) the tension in the rod? Next, the rod is rotated until it is horizontal, and then it is again released from rest. (c) At what angle from the vertical does the tension in the rod equal the weight of the ball? (d) If the mass of the ball is increased, does the answer to (c) increase, decrease, or remain the same?
A simple pendulum swings back and forth in a circular path. Including the effects of air resistance, determine which statement is true. There may be more than one correct answer. A. After the pendulum is released, it will never return to its original height. B. The total linear acceleration vector always points towards the center of the circular path as the pendulum swings back and forth. C. The work done by air resistance is always negative as the pendulum swings back and forth D. The work done by the tension force is always zero as the pendulum swings back and forth E. The gravitational force always produces a counterclockwise torque as the pendulum swings back and forth.
Suppose that a simple pendulum consists of a small 60.0 g bob at the end of a cord of negligible mass. If the angle u between the cord and the vertical is given by u = (0.0800 rad) cos[(4.43 rad/s)t + f], what are (a) the pendulum’s length and (b) its maximum kinetic energy?

Chapter 6 Solutions

Principles of Physics

Ch. 6 - Prob. 3OQCh. 6 - Prob. 4OQCh. 6 - Prob. 5OQCh. 6 - As a simple pendulum swings back and forth, the...Ch. 6 - A block of mass m is dropped from the fourth floor...Ch. 6 - If the net work done by external forces on a...Ch. 6 - Prob. 9OQCh. 6 - Prob. 10OQCh. 6 - Prob. 11OQCh. 6 - Prob. 12OQCh. 6 - Prob. 13OQCh. 6 - Prob. 14OQCh. 6 - Prob. 15OQCh. 6 - An ice cube has been given a push and slides...Ch. 6 - Prob. 1CQCh. 6 - Discuss the work done by a pitcher throwing a...Ch. 6 - A certain uniform spring has spring constant k....Ch. 6 - (a) For what values of the angle between two...Ch. 6 - Prob. 5CQCh. 6 - Cite two examples in which a force is exerted on...Ch. 6 - Prob. 7CQCh. 6 - Prob. 8CQCh. 6 - Prob. 9CQCh. 6 - Prob. 10CQCh. 6 - Prob. 11CQCh. 6 - Prob. 12CQCh. 6 - Prob. 1PCh. 6 - A raindrop of mass 3.35 105 kg falls vertically...Ch. 6 - A block of mass m = 2.50 kg is pushed a distance d...Ch. 6 - Prob. 4PCh. 6 - Spiderman, whose mass is 80.0 kg, is dangling on...Ch. 6 - Prob. 6PCh. 6 - Prob. 7PCh. 6 - Prob. 8PCh. 6 - A force F=(6j2j)N acts on a particle that...Ch. 6 - Prob. 10PCh. 6 - Prob. 11PCh. 6 - Prob. 12PCh. 6 - Prob. 13PCh. 6 - The force acting on a particle varies as shown in...Ch. 6 - Prob. 15PCh. 6 - Prob. 16PCh. 6 - When a 4.00-kg object is hung vertically on a...Ch. 6 - A small particle of mass m is pulled to the top of...Ch. 6 - A light spring with spring constant 1 200 N/m is...Ch. 6 - Prob. 20PCh. 6 - Prob. 21PCh. 6 - Prob. 22PCh. 6 - Prob. 23PCh. 6 - The force acting on a particle is Fx = (8x 16),...Ch. 6 - A force F=(4xi+3yj), where F is in newtons and x...Ch. 6 - Prob. 26PCh. 6 - A 6 000-kg freight car rolls along rails with...Ch. 6 - Prob. 28PCh. 6 - Prob. 29PCh. 6 - Prob. 30PCh. 6 - A 3.00-kg object has a velocity (6.00i1.00j)m/s....Ch. 6 - Prob. 32PCh. 6 - A 0.600-kg particle has a speed of 2.00 m/s at...Ch. 6 - Prob. 34PCh. 6 - Prob. 35PCh. 6 - Prob. 36PCh. 6 - Prob. 37PCh. 6 - Prob. 38PCh. 6 - Prob. 39PCh. 6 - Prob. 40PCh. 6 - Prob. 41PCh. 6 - A 4.00-kg particle moves from the origin to...Ch. 6 - Prob. 43PCh. 6 - Prob. 44PCh. 6 - Prob. 45PCh. 6 - Prob. 46PCh. 6 - Prob. 47PCh. 6 - Prob. 48PCh. 6 - Prob. 49PCh. 6 - Prob. 50PCh. 6 - Prob. 51PCh. 6 - Prob. 52PCh. 6 - Prob. 53PCh. 6 - Prob. 54PCh. 6 - Prob. 55PCh. 6 - Prob. 56PCh. 6 - Prob. 57PCh. 6 - Prob. 58PCh. 6 - A baseball outfielder throws a 0.150-kg baseball...Ch. 6 - Why is the following situation impossible? In a...Ch. 6 - An inclined plane of angle = 20.0 has a spring of...Ch. 6 - Prob. 62PCh. 6 - Prob. 63PCh. 6 - Prob. 64PCh. 6 - Prob. 65PCh. 6 - Prob. 66PCh. 6 - Prob. 67PCh. 6 - Prob. 68PCh. 6 - Prob. 69P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
8.01x - Lect 11 - Work, Kinetic & Potential Energy, Gravitation, Conservative Forces; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=9gUdDM6LZGo;License: Standard YouTube License, CC-BY