Fundamentals of Aerodynamics
Fundamentals of Aerodynamics
6th Edition
ISBN: 9781259129919
Author: John D. Anderson Jr.
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 7, Problem 7.2P

Note: In the following problems, you will deal with both the International System of Units (SI) (N, kg, m, s, K) and the English Engineering System (lb, slug, ft, s, ° R ). Which system to use will be self-evident in each problem. All problems deal with calorically perfect air as the gas, unless otherwise noted. Also, recall that 1 atm = 2116 lb/ft 2 = 1.01 × 10 5 N/m 2 .

Calculate c p , c v , e , and h for

a. The stagnation point conditions given in Problem 7.1

b. Air at standard sea level conditions

(If you do not remember what standard sea level conditions are, find them in an appropriate reference, such as Reference 2.)

(a)

Expert Solution
Check Mark
To determine

Specific heat at constant pressure and constant volume, specific internal energy &enthalpy at the given stagnation point.

Answer to Problem 7.2P

Specific heat capacity at constant pressure at stagnation point is, cp=6006ft.lb/(slug°R)

Specific heat capacity at constant volume at stagnation point is, cv=4290ft.lb/(slug°R)

Specific internal energy at the stagnation point is e=4.01×106ft.lb/slug

Specific enthalpy energy at the stagnation point is h=5.61×106ft.lb/slug

Explanation of Solution

Given:

  Pressure of missile at stagnation point is, Po=7.8atmTemperature of missile at stagnation point is, To=934°RThe gas constant is Btu is, R=1716ft.lb/(slug.°R)

Calculation:

Specific heat constant pressure can be given as,

  cp=γRγ1Plugging γ=1.4, R=1716ft.lb/(slug°R)cp=1.4×17161.41cp=6006ft.lb/(slug°R)

Hence, the specific heat at constant pressure is cp=6006ft.lb/(slug°R)

Specific heat constant volume can be given as,

  cv=Rγ1Plugging γ=1.4, R=1716ft.lb/(slug°R)cv=17161.41cv=4290ft.lb/(slug°R)

Hence, the specific heat at constant volume is cv=4290ft.lb/(slug°R)

Specific internal energy can be given as,

  e=cvToPlugging cv=4290ft.lb/(slug°R)&To=934°Re=4290×934e=4.01×106ft.lb/slug

Hence, the specific internal energy is e=4.01×106ft.lb/slug

Specific enthalpy can be given as,

  h=cpToPlugging cv=6006ft.lb/(slug°R)&To=934°Rh=6006×934h=5.61×106ft.lb/slug

Hence, the specific enthalpy energy is h=5.61×106ft.lb/slug

(b)

Expert Solution
Check Mark
To determine

Specific heat at constant pressure and constant volume, specific enthalpy and specific internal energy at the sea level.

Answer to Problem 7.2P

Specific heat capacity at constant pressure at sea level is, cp=6006ft.lb/(slug°R)

Specific heat capacity at constant volume at sea level is, cv=4290ft.lb/(slug°R)

Specific internal energy at sea level is e=2.23×106ft.lb/slug

Specific enthalpy energy at sea level is h=3.12×106ft.lb/slug

Explanation of Solution

Given:

  Pressure of missile at stagnation point is, Po=7.8atmTemperature of missile at sea level is, To=519°RThe gas constant is Btu is, R=1716ft.lb/(slug.°R)

Calculation:

Specific heat constant pressure can be given as,

  cp=γRγ1Plugging γ=1.4, R=1716ft.lb/(slug°R)cp=1.4×17161.41cp=6006ft.lb/(slug°R)

Hence, the specific heat at constant pressure is cp=6006ft.lb/(slug°R)

Specific heat constant volume can be given as,

  cv=Rγ1Plugging γ=1.4, R=1716ft.lb/(slug°R)cv=17161.41cv=4290ft.lb/(slug°R)

Hence, the specific heat at constant volume is cv=4290ft.lb/(slug°R)

Specific internal energy can be given as,

  e=cvToPlugging cv=4290ft.lb/(slug°R)&To=519°Re=4290×519e=2.23×106ft.lb/slug

Hence, the specific internal energy is e=2.23×106ft.lb/slug

Specific enthalpy can be given as,

  h=cpToPlugging cv=6006ft.lb/(slug°R)&To=519°Rh=6006×519h=3.12×106ft.lb/slug

Hence, the specific enthalpy energy is h=3.12×106ft.lb/slug

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
9.1 through 9.4 Determine by direct integration the moment of inertia of the shaded area with respect to the y axis. 9.5 through 9.8 Determine by direct integration the moment of inertia of the shaded area with respect to the x axis. y-4h (-) Fig. P9.3 and P9.7 X y D ykx4 Fig. P9.4 and P9.8 b X
Figure 1 shows the prosthesis inserted into the hip. Data Figure 2 shows the most important geometric dimensions (in centimeters) of the implant, as well as the most risky and problematic sections from a structural strength perspective. To simplify the analysis, the resistant sections will be assumed to be circular. The load will be assumed to act at the midpoint of the cylinder, as shown in Figure 2, with an additional safety condition of five times the person's weight. The person in question weighs 894 N (approximately 91.2 kg). The characteristics of the possible materials to be used are found in Table 1. Note that Chromium-cobalt casting has a different behavior in compression and tension. Determine The maximum and minimum stresses, as well as the shear stress, to which the part is subjected in the A-A plane. Assume it is a cylinder with a diameter of 12.7 mm. Draw the Mohr circle for the stressed state using software. Select the material for the prosthesis, which must be…
how to solve this question

Additional Engineering Textbook Solutions

Find more solutions based on key concepts
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Text book image
Refrigeration and Air Conditioning Technology (Mi...
Mechanical Engineering
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:Cengage Learning
Text book image
International Edition---engineering Mechanics: St...
Mechanical Engineering
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:CENGAGE L
Text book image
Automotive Technology: A Systems Approach (MindTa...
Mechanical Engineering
ISBN:9781133612315
Author:Jack Erjavec, Rob Thompson
Publisher:Cengage Learning
Text book image
Precision Machining Technology (MindTap Course Li...
Mechanical Engineering
ISBN:9781285444543
Author:Peter J. Hoffman, Eric S. Hopewell, Brian Janes
Publisher:Cengage Learning
Text book image
Welding: Principles and Applications (MindTap Cou...
Mechanical Engineering
ISBN:9781305494695
Author:Larry Jeffus
Publisher:Cengage Learning
First Law of Thermodynamics, Basic Introduction - Internal Energy, Heat and Work - Chemistry; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=NyOYW07-L5g;License: Standard youtube license