System Dynamics
System Dynamics
3rd Edition
ISBN: 9780073398068
Author: III William J. Palm
Publisher: MCG
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 7, Problem 7.48P

A particular house wall consists of three layers and has a surface area of 30 m2. The inside layer is 10 mm thick and made of plaster board with a thermal conductivity of k = 0.2 W/(m • °C). The middle layer is made of fiberglass insulation with k = 0.04 W/(m • °C). The outside layer is 20 mm thick and made of wood siding with k = 0.1 W/(m • °C). The inside temperature is 20°C, and the convection coefficient for the inside wall surface is /i, = 40 W/(m~ • °C). The convection coefficient for the outside wall surface is ho= 70 W/(m~ • °C). How thick must the insulation layer be so that the heat loss is no greater than 400 W if the outside temperature is —20°C?

Blurred answer
Students have asked these similar questions
A steel pipe (outside diameter 100 mm) is covered with two layers of insulation. The inside layer, 40 mm thick, has a thermal conductivity of 0.07 W/(m K). The outside layer, 20 mm thick, has a thermal conductivity of 0.15 W/(m K). The pipe is used to convey steam at a pressure of 600 kPa. The outside temperature of insulation is 24°C. If the pipe is 10 m long, determine the following, assuming the resistance to conductive heat transfer in steel pipe and convective resistance on the steam side are negligible: a. The heat loss per hour. b. The interface temperature of insulation.
A wood stove heats a small cabin with the following dimensions 8 m x 6 m x 3 m (length x width x height) to 25°C. Of the heat generated by burning wood, 60% is lost up the chimney. The cabin also loses heat through walls, ceiling and floor. Assume that all sides of the house except the floor are insulated with a 10 cm thick polyethylene foam layer having a thermal conductivity htc = 0.038 W/(m•°C). The heat loss through the floor is 1/5 of the heat loss through the ceiling. Outside air is at -5°C. a) How much heat is lost in total from the ceiling, walls, and floor? b) How many kg of wood per hour is needed as fuel for the cabin to maintain its temperature if heat value of wood is AH = 18,000 kJ/kg?
Water vapor at a temperature of 120 ° C flows through a stainless steel pipe (k = 57 W / mK). The inner diameter of the pipe is 47 mm, the outer diameter is 50 mm, and the length is 100 m. The heat transfer coefficient between the water vapor and the pipe wall is 200 W / m²K, and the heat transfer coefficient between the outer surface of the pipe and the ambient air is 25 W / m_K. The outdoor air temperature is 10 ° C. Find the thermal conductivity coefficient of the insulation material, since it is desired to insulate with an insulation material with a layer thickness of 50 mm in order to reduce the loss of heat from the pipe by 60%.

Chapter 7 Solutions

System Dynamics

Ch. 7 - 7.11 Derive the expression for the capacitance of...Ch. 7 - Air flows in a certain cylindrical pipe 1 m long...Ch. 7 - Derive the expression for the linearized...Ch. 7 - Consider the cylindrical container treated in...Ch. 7 - A certain tank has a bottom area A = 20 m2. The...Ch. 7 - A certain tank has a circular bottom area A = 20...Ch. 7 - The water inflow rate to a certain tank was kept...Ch. 7 - Prob. 7.18PCh. 7 - Prob. 7.19PCh. 7 - In the liquid level system shown in Figure P7.20,...Ch. 7 - The water height in a certain tank was measured at...Ch. 7 - Derive the model for the system shown in Figure...Ch. 7 - (a) Develop a model of the two liquid heights in...Ch. 7 - Prob. 7.24PCh. 7 - Design a piston-type damper using an oil with a...Ch. 7 - Prob. 7.26PCh. 7 - 7.27 An electric motor is sometimes used to move...Ch. 7 - Prob. 7.28PCh. 7 - Prob. 7.29PCh. 7 - Figure P7.3O shows an example of a hydraulic...Ch. 7 - Prob. 7.31PCh. 7 - Prob. 7.32PCh. 7 - Prob. 7.33PCh. 7 - Prob. 7.34PCh. 7 - Prob. 7.35PCh. 7 - Prob. 7.36PCh. 7 - Prob. 7.37PCh. 7 - (a) Determine the capacitance of a spherical tank...Ch. 7 - Obtain the dynamic model of the liquid height It...Ch. 7 - Prob. 7.40PCh. 7 - Prob. 7.41PCh. 7 - Prob. 7.42PCh. 7 - Prob. 7.43PCh. 7 - Prob. 7.44PCh. 7 - Prob. 7.45PCh. 7 - The copper shaft shown in Figure P7.46 consists of...Ch. 7 - A certain radiator wall is made of copper with a...Ch. 7 - A particular house wall consists of three layers...Ch. 7 - A certain wall section is composed of a 12 in. by...Ch. 7 - Prob. 7.50PCh. 7 - Prob. 7.51PCh. 7 - A steel tank filled with water has a volume of...Ch. 7 - Prob. 7.53PCh. 7 - Prob. 7.54PCh. 7 - Prob. 7.55P
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license