Fundamentals of Aerodynamics
Fundamentals of Aerodynamics
6th Edition
ISBN: 9781259129919
Author: John D. Anderson Jr.
Publisher: McGraw-Hill Education
bartleby

Videos

Textbook Question
Book Icon
Chapter 9, Problem 9.18P

(The purpose of this problem is to calculate a two-dimensional expanding supersonic flow and compare it with the analogous quasi-one-dimensional flow in Problem 10.15.) Consider a two-dimensional duct with a straight horizontal lower wall, and a straight upper wall inclined upward through the angle θ = 3 ° . The height of the duct entrance is 0.3 m. A uniform horizontal flow at Mach 2 enters the duct and goes through a Prandtl-Maycr expansion wave centered at the top corner of the entrance. The wave propagates to the bottom wall, where the leading edge (the forward Mach line) of the wave intersects the bottom wall at point A located at distance x A from the duct entrance. Imagine a line drawn perpendicular to the lower wall at point A, and intersecting the upper wall at point B. The local height of the duct at point A is the length of this line AB. Calculate the average flow Mach number over AB. assuming that M varies linearly along that portion of AB inside the expansion wave.

Blurred answer
Students have asked these similar questions
Consider a convergent-divergent duct with exit and throat areas of 0.5 m^2 and 0.25 m^2, respectively. The inlet reservoir pressure is 1 atm and the exit static pressure is 0.6 atm. For this pressure ratio, the flow will be supersonic in a portion of the nozzle, terminating with a normal shock inside the nozzle. Calculate the local area ratio (A/A*) at which the shock is located inside the nozzle.
Consider an infinitely thin flat plate with a 1 m chord at an angle of attackof 10◦ in a supersonic flow. The pressure and shear stress distributions onthe upper and lower surfaces are given by pu = 4 × 104(x − 1)2 +5.4 × 104, pl = 2 × 104(x − 1)2 + 1.73 × 105, τu = 288x−0.2, andτl = 731x−0.2, respectively, where x is the distance from the leading edgein meters and p and τ are in newtons per square meter. Calculate thenormal and axial forces, the lift and drag, moments about the leadingedge, and moments about the quarter chord, all per unit span. Also,calculate the location of the center of pressure.
A Pitot tube is inserted into an airflow where the static pressure is 1 atm. Calculate the flow Mach number when the Pitot tube measures (a) 1.276 atm, (b) 2.714 atm, (c) 12.06 atm.
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License