Applied Fluid Mechanics
Applied Fluid Mechanics
7th Edition
ISBN: 9780133414622
Author: UNTENER
Publisher: YUZU
bartleby

Videos

Textbook Question
Book Icon
Chapter 9, Problem 9.30PP

Figure 9.20 shows a liquid-to-air heat exchanger in which air flows at 50   m 3 Zh inside a rectangular passage and around a set of five vertical tubes, Each tube is a standard hydraulic steel tube, 15   m m OD ×

1.2 mm wall. The air has a density of 1.15   k g / m 3 and a dynamic viscosity of 1.63

   x   10 s P a   s . Compute the Reynolds number for the air flow.

Blurred answer
Students have asked these similar questions
A venturi meter is used to measure liquid flow rate of 450 m3 /h. The difference in pressure across the venturi meter tapping points is equivalent to 8 m of the flowing liquid. Diameter of the pipeline is 20 cm. Calculate the throat diameter of the venturi meter. Assume the coefficient of discharge for the venturi meter as 0.96.
PROCESS INSTRUMENTATION AND CONTROL In a differential pressure flow meter, determine the velocity at the outlet for the given technical     specification. The density of the liquid flowing through the pipeline is 997 kg/m³, Pressure at inlet is 10 lb/ft2, pressure at outlet is 8 lb/ft2 and cross sectional area of the orifice is 0.2512 m. Note: Ratio of meter diameter to pipe diameter is 0.5 and discharge coefficient is 0.61. Also, find the flow rate.
A certain fluid has a specific gravity of 1.25 flows through a 150 mm diameter pipe with mean velocity of 1.2 m/s. a.) Determine the volume flow rate? b.) Determine the mass flow rate? c.) Determine the weight flow rate?

Chapter 9 Solutions

Applied Fluid Mechanics

Ch. 9 - Prob. 9.11PPCh. 9 - Prob. 9.12PPCh. 9 - Prob. 9.13PPCh. 9 - Prob. 9.14PPCh. 9 - Using Eq. (9-4), compute the ratio of the average...Ch. 9 - Prob. 9.16PPCh. 9 - Repeat Problem 9.16 for the same conditions,...Ch. 9 - Prob. 9.18PPCh. 9 - A shell-and-tube heat exchanger is made of two...Ch. 9 - Figure 9.14 shows a heat exchanger in which each...Ch. 9 - Figure 9.15 shows the cross section of a...Ch. 9 - Air with a specific weight of 12.5N/m3 and a...Ch. 9 - Carbon dioxide with a specific weight of...Ch. 9 - Water at 90F flows in the space between 6 in...Ch. 9 - Refer to the shell-and-tube heat exchanger shown...Ch. 9 - Refer to Fig. 9.14, which shows two DN 150...Ch. 9 - Refer to Fig. 9.15, which shows three pipes inside...Ch. 9 - Water at 10C is flowing in the shell shown in Fig....Ch. 9 - Figure 9.19 shows the cross section of a heat...Ch. 9 - Figure 9.20 shows a liquid-to-air heat exchanger...Ch. 9 - Glycerin ( sg=1.26 ) at 40C flows in the portion...Ch. 9 - Each of the square tubes shown in Fig. 9.21...Ch. 9 - A heat sink for an electronic circuit is made by...Ch. 9 - Figure 9.23 shows the cross section of a cooling...Ch. 9 - Prob. 9.35PPCh. 9 - The blade of a gas turbine engine contains...Ch. 9 - For the system described in Problem 9.24. compute...Ch. 9 - For the shell-and-tube heat exchanger described in...Ch. 9 - For the system described in Problem 9.26 compute...Ch. 9 - For the system described in Problem 9.27 compute...Ch. 9 - For the shell-and-tube heat exchanger described in...Ch. 9 - For the heat exchanger described in Problem 9.29...Ch. 9 - For the glycerin described in Problem 9.31 compute...Ch. 9 - For the flow of water in the square tubes...Ch. 9 - If the heat sink described in Problem 9.33 is 105...Ch. 9 - Compute the energy loss for the flow of water in...Ch. 9 - In Fig. 9.26 ethylene glycol ( sg=1.10 ) at 77F...Ch. 9 - Figure 9.27 shows a duct in which methyl alcohol...Ch. 9 - Prob. 9.49PPCh. 9 - Figure 9.29 shows a system in which methyl alcohol...Ch. 9 - A simple heat exchanger is made by welding...Ch. 9 - Three surfaces of an instrument package are cooled...Ch. 9 - Figure 9.32 shows a heat exchanger with internal...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License