Atkins' Physical Chemistry
Atkins' Physical Chemistry
11th Edition
ISBN: 9780198769866
Author: ATKINS, P. W. (peter William), De Paula, Julio, Keeler, JAMES
Publisher: Oxford University Press
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 9, Problem 9E.2P

(a)

Interpretation Introduction

Interpretation:

The energies of π molecular orbitals of benzene and cyclooctatetraene have to be calculated.  Whether the degenerate energy levels are present or absent have to be commented.

Concept introduction:

Delocalization of energy refers to the extra stabilization of the molecule which is due to allowing the electrons to spread over the entire molecule.  To calculate the delocalization energy, the energy of the molecule in question is compared with a molecule in which electrons cannot spread over the molecule.  Energy levels which have the same value of energy but are separate are known as degenerate energy levels.

(a)

Expert Solution
Check Mark

Answer to Problem 9E.2P

The energies of the π molecular orbitals of benzene are α+2β, α+β, α+β, αβ, αβ, α2β.  The energies of the π molecular orbitals of cyclooctatetraene are α+2β, α+1.414β, α+1.414β, α, α, α1.414β, α1.414β, α2β.

Benzene has two degenerate levels of energy, α+β and two degenerate levels of energy αβ.  Cyclooctatetraene has a total of 6 degenerate levels.  2 levels have the energy α+1.414β, 2 levels have the energy α, and 2 levels have the energy α1.414β.

Explanation of Solution

The expression for the energies Ek of the π molecular orbitals is shown below.

    Ek=α+2βcos2kπN        (1)

Where,

  • N is the number of carbon atoms.
  • α is coulomb integral.
  • β is resonance integral.
  • k=N2 for even N.
  • k=N12 for odd value of N.

In benzene, the number of carbon atoms, N is 6.

Therefore, the value of k is calculated as shown below.

    k=62=3=0,±1,±2,3

Substitute the value of k=0 and N=6 in equation (1).

    E0=α+2βcos2×0×π6=α+2βascos0=1

Substitute the value of k=1 and N=6 in equation (1).

    E1=α+2βcos2×1×π6=α+2βcosπ3=α+(2β×12)ascosπ3=12=α+β

Substitute the value of k=1 and N=6 in equation (1).

    E1=α+2βcos2×(1)×π6=α+2βcos(π3)=α+(2β×12)ascos(π3)=12=α+β

Substitute the value of k=2 and N=6 in equation (1).

    E2=α+2βcos2×2×π6=α+2βcos(2π3)=α+(2β×(12))ascos(2π3)=12=αβ

Substitute the value of k=2 and N=6 in equation (1).

    E2=α+2βcos2×(2)×π6=α+2βcos(2π3)=α+(2β×(12))ascos(2π3)=12=αβ

Substitute the value of k=3 and N=6 in equation (1).

    E3=α+2βcos2×3×π6=α+2βcos(π)=α+(2β×(1))ascosπ=1=α2β

Therefore, the energies of the π molecular orbitals of benzene are α+2β, α+β, α+β, αβ, αβ, α2β.

Benzene has two degenerate levels of energy, α+β and two degenerate levels of energy αβ.

In cyclooctatetraene, the number of carbon atoms, N is 8.

Therefore, the value of k is calculated as shown below.

    k=82=4=0,±1,±2,±3,4

Substitute the value of k=0 and N=8 in equation (1).

    E0=α+2βcos2×0×π8=α+2βascos0=1

Substitute the value of k=1 and N=8 in equation (1).

    E1=α+2βcos2×1×π8=α+2βcosπ4=α+(2β×0.707)ascosπ4=0.707=α+1.414β

Substitute the value of k=1 and N=8 in equation (1).

    E1=α+2βcos2×(1)×π8=α+2βcos(π4)=α+(2β×0.707)ascos(π4)=0.707=α+1.414β

Substitute the value of k=2 and N=8 in equation (1).

    E2=α+2βcos2×2×π8=α+2βcos(π2)=α+(2β×0)ascos(π2)=0=α

Substitute the value of k=2 and N=8 in equation (1).

    E2=α+2βcos2×(2)×π8=α+2βcos(π2)=α+(2β×0)ascos(π2)=0=α

Substitute the value of k=3 and N=8 in equation (1).

    E3=α+2βcos2×3×π8=α+2βcos(3π4)=α+2β×(0.707)ascos3π4=0.707=α1.414β

Substitute the value of k=3 and N=8 in equation (1).

    E3=α+2βcos2×(3)×π8=α+2βcos(3π4)=α+2β×(0.707)ascos(3π4)=0.707=α1.414β

Substitute the value of k=4 and N=8 in equation (1).

    E4=α+2βcos2×4×π8=α+2βcosπ=α+2β×(1)ascosπ=1=α2β

Therefore, the energies of the π molecular orbitals of cyclooctatetraene are α+2β, α+1.414β, α+1.414β, α, α, α1.414β, α1.414β, α2β.

Cyclooctateraene has a total of 6 degenerate levels.  2 levels have the energy α+1.414β, 2 levels have the energy α, and 2 levels have the energy α1.414β.

(b)

Interpretation Introduction

Interpretation:

The delocalization energies of benzene have to be calculated and compared with hexatriene.  The conculsions have to be stated.

Concept introduction:

Delocalization of energy refers to the extra stabilization of the molecule which is due to allowing the electrons to spread over the entire molecule.  To calculate the delocalization energy, the energy of the molecule in question is compared with a molecule in which electrons cannot spread over the molecule.

(b)

Expert Solution
Check Mark

Answer to Problem 9E.2P

The delocalization energy of benzene is 2β.  The delocalization energy of hexatriene is 0.988β.  This is less than the delocalization energy of benzene.  Benzene is molar stable than hexatriene.

Explanation of Solution

The delocalization energy of benzene is calculated by the formula below.

    Delocalizationenergy=EconjugatedEisolateddoublebond        (2)

The energies of the π molecular orbitals of benzene are α+2β, α+β, α+β, αβ, αβ, α2β.

Out of these, the energy levels, α+2β, α+β, α+β are occupied by two electrons each.

Therefore, the energy of the conjugated molecule is calculated below.

    Econjugated=2(α+2β)+2(α+β)+2(α+β)=6α+8β

The energy of the isolated double bond is given below.

    Eisolateddoublebond=6(α+β)=6α+6β

Substitute the value of Econjugated and Eisolateddoublebond in equation (2).

    Delocalizationenergy=6α+8β(6α+6β)=8β6β=2β

Therefore, the delocalization energy of benzene is 2β.

The expression for the energies Ek of the π molecular orbitals of linear polyenes is shown below.

    Ek=α+2βcoskπN+1        (3)

Where,

  • N is the number of carbon atoms.
  • α is coloumb integral.
  • β is resonance integral.
  • k=N2 for even N.
  • k=N12 for odd value of N.

In hexatriene, the number of carbon atoms, N is 6.

Therefore, the value of k is is shown below.

    k=1,2,3,4,5,6

Substitute the value of k=1 and N=6 in equation (3).

    E1=α+2βcos1×π6+1=α+2βcosπ7ascosπ7=0.900968=α+(2β×0.900968)=α+1.802β

Substitute the value of k=2 and N=6 in equation (3).

    E2=α+2βcos2×π6+1=α+2βcos2π7ascos2π7=0.6235=α+(2β×0.6235)=α+1.247β

Substitute the value of k=3 and N=6 in equation (3).

    E3=α+2βcos3×π6+1=α+2βcos3π7ascos3π7=0.2225=α+(2β×0.2225)=α+0.445β

Substitute the value of k=4 and N=6 in equation (3).

    E4=α+2βcos4×π6+1=α+2βcos4π7ascos4π7=0.2225=α+(2β×(0.2225))=α0.445β

Substitute the value of k=5 and N=6 in equation (3).

    E5=α+2βcos5×π6+1=α+2βcos5π7ascos2π7=0.6235=α+(2β×(0.6235))=α1.247β

Substitute the value of k=6 and N=6 in equation (3).

    E6=α+2βcos6×π6+1=α+2βcos6π7ascos6π7=0.900968=α+(2β×(0.900968))=α1.802β

Therefore, the energies of the π molecular orbitals of hexatriene are α+1.802β, α+1.247β, α+0.445β, α0.445β, α1.247β, α1.802β.

Out of these, the energy levels, α+1.802β, α+1.247β, α+0.445β are occupied by two electrons each.

Therefore, the energy of the conjugated molecule is calculated below.

    Econjugated=2(α+1.802β)+2(α+1.247β)+2(α+0.445β)=6α+6.988β

The energy of the isolated double bond is given below.

    Eisolateddoublebond=6(α+β)=6α+6β

Substitute the value of Econjugated and Eisolateddoublebond in equation (2).

    Delocalizationenergy=6α+6.988β(6α+6β)=6.988β6β=0.988β

Therefore, the delocalization energy of hexatriene is 0.988β.  This is less than the delocalization energy of benzene.  Therefore, benzene is more stable than hexatriene.

(c)

Interpretation Introduction

Interpretation:

The delocalization energies of cyclooctatetraene and octatetraene have to be calculated and compared.  Whether the conclusions for this pair same as that of part (b) has to be stated.

Concept introduction:

Delocalization of energy refers to the extra stabilization of the molecule which is due to allowing the electrons to spread over the entire molecule.  To calculate the delocalization energy, the energy of the molecule in question is compared with a molecule in which electrons cannot spread over the molecule.

(c)

Expert Solution
Check Mark

Answer to Problem 9E.2P

The delocalization energy of cyclooctatetraene is 1.656β.  The delocalization energy of octatetraene is 1.516β.  This is less than the delocalization energy of cyclooctatetraene.  Cyclooctatetraene is more stable than octatetraene.  This is similar to the conclusion obtained in part (b).

Explanation of Solution

The delocalization energy of benzene is calculated by the formula below.

    Delocalizationenergy=EconjugatedEisolateddoublebond        (2)

The energies of the π molecular orbitals of cyclooctatetraene are α+2β, α+1.414β, α+1.414β, α, α, α1.414β, α1.414β, α2β.

Out of these, the energy levels, α+2β, α+1.414β, α+1.414β, α are occupied by two electrons each.

Therefore, the energy of the conjugated molecule is calculated below.

    Econjugated=2(α+2β)+2(α+1.414β)+2(α+1.414β)+2(α)=8α+9.656β

The energy of the isolated double bond is given below.

    Eisolateddoublebond=8(α+β)=8α+8β

Substitute the value of Econjugated and Eisolateddoublebond in equation (2).

    Delocalizationenergy=8α+9.656β(8α+8β)=9.656β8β=1.656β

Therefore, the delocalization energy of cyclooctatetraene is 1.656β.

The expression for the energies Ek of the π molecular orbitals of linear polyenes is shown below.

    Ek=α+2βcoskπN+1        (3)

Where,

  • N is the number of carbon atoms.
  • α is coulomb integral.
  • β is resonance integral.
  • k=N2 for even N.
  • k=N12 for odd value of N.

In octatetraene, the number of carbon atoms, N is 8.

Therefore, the value of k is is shown below.

    k=1,2,3,4,5,6,78

Substitute the value of k=1 and N=8 in equation (3).

    E1=α+2βcos1×π8+1=α+2βcosπ9ascosπ9=0.9397=α+(2β×0.9397)=α+1.879β

Substitute the value of k=2 and N=8 in equation (3).

    E2=α+2βcos2×π8+1=α+2βcos2π9ascos2π9=0.7660=α+(2β×0.7660)=α+1.532β

Substitute the value of k=3 and N=8 in equation (3).

    E3=α+2βcos3×π8+1=α+2βcos3π9ascos3π9=0.5=α+(2β×0.5)=α+β

Substitute the value of k=4 and N=8 in equation (3).

    E4=α+2βcos4×π8+1=α+2βcos4π9ascos4π9=0.1736=α+(2β×0.1736)=α+0.347β

Substitute the value of k=5 and N=8 in equation (3).

    E4=α+2βcos5×π8+1=α+2βcos5π9ascos5π9=0.1736=α+(2β×(0.1736))=α0.347β

Substitute the value of k=6 and N=8 in equation (3).

    E3=α+2βcos6×π8+1=α+2βcos6π9ascos3π9=0.5=α+(2β×(0.5))=αβ

Substitute the value of k=7 and N=8 in equation (3).

    E2=α+2βcos7×π8+1=α+2βcos7π9ascos2π9=0.7660=α+(2β×(0.7660))=α1.532β

Substitute the value of k=8 and N=8 in equation (3).

    E1=α+2βcos8×π8+1=α+2βcos8π9ascos8π9=0.9397=α+(2β×(0.9397))=α1.879β

Therefore, the energies of the π molecular orbitals of octatetraene are α+1.879β, α+1.532β, α+β, α+0.347β, α0.347β, αβ, α1.532β, α1.879β.

Out of these, the energy levels, α+1.879β, α+1.532β, α+β, α+0.347β are occupied by two electrons each.

Therefore, the energy of the conjugated molecule is calculated below.

    Econjugated=2(α+1.879β)+2(α+1.532β)+2(α+0.347β)+2(α+β)=8α+9.516β

The energy of the isolated double bond is given below.

    Eisolateddoublebond=8(α+β)=8α+8β

Substitute the value of Econjugated and Eisolateddoublebond in equation (2).

    Delocalizationenergy=8α+9.516β(8α+8β)=9.516β8β=1.516β

Therefore, the delocalization energy of octatetraene is 1.516β.  This is less than the delocalization energy of cyclooctatetraene.  Therefore, cyclooctatetraene is more stable than hexatriene.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 9 Solutions

Atkins' Physical Chemistry

Ch. 9 - Prob. 9A.3AECh. 9 - Prob. 9A.3BECh. 9 - Prob. 9A.4AECh. 9 - Prob. 9A.4BECh. 9 - Prob. 9A.5AECh. 9 - Prob. 9A.5BECh. 9 - Prob. 9A.6AECh. 9 - Prob. 9A.6BECh. 9 - Prob. 9A.7AECh. 9 - Prob. 9A.7BECh. 9 - Prob. 9A.8AECh. 9 - Prob. 9A.8BECh. 9 - Prob. 9A.1PCh. 9 - Prob. 9A.2PCh. 9 - Prob. 9A.3PCh. 9 - Prob. 9B.2DQCh. 9 - Prob. 9B.3DQCh. 9 - Prob. 9B.1AECh. 9 - Prob. 9B.1BECh. 9 - Prob. 9B.2AECh. 9 - Prob. 9B.2BECh. 9 - Prob. 9B.3AECh. 9 - Prob. 9B.3BECh. 9 - Prob. 9B.4AECh. 9 - Prob. 9B.4BECh. 9 - Prob. 9B.1PCh. 9 - Prob. 9B.2PCh. 9 - Prob. 9B.3PCh. 9 - Prob. 9C.1DQCh. 9 - Prob. 9C.2DQCh. 9 - Prob. 9C.3DQCh. 9 - Prob. 9C.4DQCh. 9 - Prob. 9C.1AECh. 9 - Prob. 9C.1BECh. 9 - Prob. 9C.2AECh. 9 - Prob. 9C.2BECh. 9 - Prob. 9C.3AECh. 9 - Prob. 9C.3BECh. 9 - Prob. 9C.4AECh. 9 - Prob. 9C.4BECh. 9 - Prob. 9C.5AECh. 9 - Prob. 9C.5BECh. 9 - Prob. 9C.6AECh. 9 - Prob. 9C.6BECh. 9 - Prob. 9C.2PCh. 9 - Prob. 9C.4PCh. 9 - Prob. 9D.1DQCh. 9 - Prob. 9D.2DQCh. 9 - Prob. 9D.3DQCh. 9 - Prob. 9D.4DQCh. 9 - Prob. 9D.1AECh. 9 - Prob. 9D.1BECh. 9 - Prob. 9D.2AECh. 9 - Prob. 9D.2BECh. 9 - Prob. 9D.3AECh. 9 - Prob. 9D.3BECh. 9 - Prob. 9D.4AECh. 9 - Prob. 9D.4BECh. 9 - Prob. 9D.5AECh. 9 - Prob. 9D.5BECh. 9 - Prob. 9D.6AECh. 9 - Prob. 9D.6BECh. 9 - Prob. 9D.7AECh. 9 - Prob. 9D.7BECh. 9 - Prob. 9D.1PCh. 9 - Prob. 9E.1DQCh. 9 - Prob. 9E.2DQCh. 9 - Prob. 9E.3DQCh. 9 - Prob. 9E.4DQCh. 9 - Prob. 9E.5DQCh. 9 - Prob. 9E.1AECh. 9 - Prob. 9E.1BECh. 9 - Prob. 9E.2AECh. 9 - Prob. 9E.2BECh. 9 - Prob. 9E.3AECh. 9 - Prob. 9E.3BECh. 9 - Prob. 9E.4AECh. 9 - Prob. 9E.4BECh. 9 - Prob. 9E.6AECh. 9 - Prob. 9E.6BECh. 9 - Prob. 9E.1PCh. 9 - Prob. 9E.2PCh. 9 - Prob. 9E.3PCh. 9 - Prob. 9E.6PCh. 9 - Prob. 9.1IACh. 9 - Prob. 9.2IACh. 9 - Prob. 9.4IA
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
INTRODUCTION TO MOLECULAR QUANTUM MECHANICS -Valence bond theory - 1; Author: AGK Chemistry;https://www.youtube.com/watch?v=U8kPBPqDIwM;License: Standard YouTube License, CC-BY