Mathematical Methods in the Physical Sciences
Mathematical Methods in the Physical Sciences
3rd Edition
ISBN: 9780471198260
Author: Mary L. Boas
Publisher: Wiley, John & Sons, Incorporated
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 9.5, Problem 1P

(a) Consider the case of two dependent variables. Show that if F = F x , y , z , y , z and we want to find y ( x ) and z ( x ) to make I = x 1 x 2 F d x stationary, then y and z should each satisfy an Euler equation as in (5.1). Hint: Construct a formula for a varied path Y for y as in Section 2 [ Y = y + e η ( x )  with  η ( x ) arbitrary] and construct a similar formula for z [let Z = z + ϵ ζ ( x ) , where ζ ( x ) is another arbitrary function]. Carry through the details of differentiating with respect to ϵ , putting ϵ = 0 , and integrating by parts as in Section 2 ; then use the fact that both η ( x ) and ζ ( x ) are arbitrary to get (5.1).

(b) Consider the case of two independent variables. You want to find the function u ( x , y ) which makes stationary the double integral y 1 y 2 x 1 x 2 F u , x , y , u x , u y d x d y .

Hint: Let the varied U ( x , y ) = u ( x , y ) + e η ( x , y ) where η ( x , y ) = 0 at x = x 1 x = x 2 , y = y 1 , y = y 2 , but is otherwise arbitrary. As in Section 2, differentiate with respect to ϵ , set ϵ = 0 , integrate by parts, and use the fact that η is arbitrary. Show that the Euler equation is then x F u x + y F u y F u = 0 .

(c) Consider the case in which F depends on x , y , y , and y . Assuming zero values of the variation η ( x ) and its derivative at the endpoints x 1 and x 2 , show that then the Euler equation becomes

d 2 d x 2 F y d d x F y + F y = 0 .

Blurred answer
Students have asked these similar questions
Consider the integral X -dx with n = 4. a. Find the trapezoid rule approximations to the integral using n and 2n subintervals. b. Find the Simpson's rule approximation to the integral using 2n subintervals. c. Compute the absolute errors in the trapezoid rule and Simpson's rule with 2n subintervals. a. What is the trapezoid approximation with n subintervals? T(4)=(Round to six decimal places as needed.) What is the trapezoid approximation with 2n subintervals? T(8) = (Round to six decimal places as needed.) b. What is the Simpson's rule approximation with 2n subintervals? S(8)=(Round to six decimal places as needed.) c. What is the error in the trapezoid rule approximation with 2n subintervals? (Round to six decimal places as needed.) What is the error in the Simpson's rule approximation with 2n subintervals? (Round to six decimal places as needed.)
00 fe Suppose that the probability that a particular computer chip fails after t = a hours of operation is 0.00004 0.00004 dt. a a. Find the probability that the computer chip fails after 16.000 hr of operation (that is, the chip lasts at least 16,000 hr). b. Of the chips that are still in operation after 16,000 hr, what fraction of these will operate for at least another 16,000 hr? c. Evaluate 0.00004 Se -0.000041 dt and interpret its meaning. a. The probability that the chip fails after 16,000 hr of operation is (Round to three decimal places as needed.) b. The fraction that will still be operating for at least another 16.000 hr is (Round to three decimal places as needed.) c. Choose the correct answer below. OA. The probability that the chip never fails is 0.00004 -0.00004t dt= OB. The probability that the chip eventually fails is 0.00004 S 0.00004 dt = dt= -0.000041 dt= OC. The probability that the chip fails immediately is 0.00004 OD. There is not enough information to interpret…
Find the volume of the described solid of revolution or state that it does not exist. The region bounded by f(x) = (x-5) and the x-axis on the interval (5,7] is revolved about the x-axis. Find the volume or state that it does not exist. Select the correct answer and, if necessary, fill in the box to complete your choice. OA. The volume is cubic units. (Type an exact answer.) OB. The volume does not exist.

Chapter 9 Solutions

Mathematical Methods in the Physical Sciences

Ch. 9.2 - Write and solve the Euler equations to make the...Ch. 9.2 - Write and solve the Euler equations to make the...Ch. 9.2 - Write and solve the Euler equations to make the...Ch. 9.3 - Change the independent variable to simplify the...Ch. 9.3 - Change the independent variable to simplify the...Ch. 9.3 - Change the independent variable to simplify the...Ch. 9.3 - Change the independent variable to simplify the...Ch. 9.3 - Write and solve the Euler equations to make the...Ch. 9.3 - Write and solve the Euler equations to make the...Ch. 9.3 - Write and solve the Euler equations to make the...Ch. 9.3 - Write and solve the Euler equations to make the...Ch. 9.3 - Write and solve the Euler equations to make the...Ch. 9.3 - Write and solve the Euler equations to make the...Ch. 9.3 - Use Fermats principle to find the path followed by...Ch. 9.3 - Use Fermats principle to find the path followed by...Ch. 9.3 - Use Fermats principle to find the path followed by...Ch. 9.3 - Use Fermats principle to find the path followed by...Ch. 9.3 - Find the geodesics on a plane using polar...Ch. 9.3 - Prob. 16PCh. 9.3 - Find the geodesics on the cone x2+y2=z2. Hint: Use...Ch. 9.3 - Find the geodesics on a sphere. Hints: Use...Ch. 9.4 - Verify equations (4.2).Ch. 9.4 - Show, in Figure 4.4, that for a point like...Ch. 9.4 - In the brachistochrone problem, show that if the...Ch. 9.4 - Consider a rapid transit system consisting of...Ch. 9.4 - In Problems 5 to 7, use Fermats principle to find...Ch. 9.4 - In Problems 5 to 7, use Fermats principle to find...Ch. 9.4 - In Problems 5 to 7, use Fermats principle to find...Ch. 9.5 - (a) Consider the case of two dependent variables....Ch. 9.5 - Set up Lagranges equations in cylindrical...Ch. 9.5 - Do Problem 2 in spherical coordinates.Ch. 9.5 - Use Lagranges equations to find the equation of...Ch. 9.5 - Find the equation of motion of a particle moving...Ch. 9.5 - A particle moves on the surface of a sphere of...Ch. 9.5 - Prove that a particle constrained to stay on a...Ch. 9.5 - Two particles each of mass m are connected by an...Ch. 9.5 - A mass m moves without friction on the surface of...Ch. 9.5 - Do Example 3 above, using cylindrical coordinates...Ch. 9.5 - A yo-yo (as shown) falls under gravity. Assume...Ch. 9.5 - Find the Lagrangian and Lagranges equations for a...Ch. 9.5 - A particle moves without friction under gravity on...Ch. 9.5 - 2A hoop of mass M and radius a rolls without...Ch. 9.5 - Generalize Problem 14 to any mass M of circular...Ch. 9.5 - Find the Lagrangian and the Lagrange equation for...Ch. 9.5 - A simple pendulum (Problem 4) is suspended from a...Ch. 9.5 - A hoop of mass m in a vertical plane rests on a...Ch. 9.5 - For the following problems, use the Lagrangian to...Ch. 9.5 - For the following problems, use the Lagrangian to...Ch. 9.5 - For the following problems, use the Lagrangian to...Ch. 9.5 - For the following problems, use the Lagrangian to...Ch. 9.5 - For the following problems, use the Lagrangian to...Ch. 9.5 - For the following problems, use the Lagrangian to...Ch. 9.5 - For the following problems, use the Lagrangian to...Ch. 9.6 - In Problems 1 and 2, given the length l of a curve...Ch. 9.6 - In Problems 1 and 2, given the length l of a curve...Ch. 9.6 - Given 10 cc of lead, find how to form it into a...Ch. 9.6 - Prob. 4PCh. 9.6 - A curve y=y(x), joining two points x1 and x2 on...Ch. 9.6 - In Problem 5, given the volume, find the shape of...Ch. 9.6 - Integrate (6.2), simplify the result and integrate...Ch. 9.8 - (a) In Section 3, we showed how to obtain a first...Ch. 9.8 - Find a first integral of the Euler equation to...Ch. 9.8 - Find a first integral of the Euler equation to...Ch. 9.8 - Find a first integral of the Euler equation to...Ch. 9.8 - Write and solve the Euler equations to make...Ch. 9.8 - Write and solve the Euler equations to make...Ch. 9.8 - Write and solve the Euler equations to make...Ch. 9.8 - Find the geodesics on the cylinder r=1+cos.Ch. 9.8 - Prob. 9MPCh. 9.8 - Find the geodesics on the parabolic cylinder y=x2.Ch. 9.8 - In Problems 11 to 18, use Fermats principle to...Ch. 9.8 - In Problems 11 to 18, use Fermats principle to...Ch. 9.8 - In Problems 11 to 18, use Fermats principle to...Ch. 9.8 - In Problems 11 to 18, use Fermats principle to...Ch. 9.8 - In Problems 11 to 18, use Fermats principle to...Ch. 9.8 - In Problems 11 to 18, use Fermats principle to...Ch. 9.8 - In Problems 11 to 18, use Fermats principle to...Ch. 9.8 - In Problems 11 to 18, use Fermats principle to...Ch. 9.8 - Find Lagranges equations in polar coordinates for...Ch. 9.8 - Repeat Problem 19 if V=K/r.Ch. 9.8 - Write Lagranges equations in cylindrical...Ch. 9.8 - In spherical coordinates, find the Lagrange...Ch. 9.8 - A particle slides without friction around a...Ch. 9.8 - Write and simplify the Euler equation to make...Ch. 9.8 - Prob. 25MPCh. 9.8 - A wire carrying a uniform distribution of positive...Ch. 9.8 - Find a first integral of the Euler equation for...Ch. 9.8 - Write the Lagrange equation for a particle moving...
Knowledge Booster
Background pattern image
Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Modern Algebra
Algebra
ISBN:9781285463230
Author:Gilbert, Linda, Jimmie
Publisher:Cengage Learning,
Text book image
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Vector Spaces | Definition & Examples; Author: Dr. Trefor Bazett;https://www.youtube.com/watch?v=72GtkP6nP_A;License: Standard YouTube License, CC-BY
Understanding Vector Spaces; Author: Professor Dave Explains;https://www.youtube.com/watch?v=EP2ghkO0lSk;License: Standard YouTube License, CC-BY