BuyFindarrow_forward

Elementary Geometry for College St...

6th Edition
Daniel C. Alexander + 1 other
ISBN: 9781285195698

Solutions

Chapter
Section
BuyFindarrow_forward

Elementary Geometry for College St...

6th Edition
Daniel C. Alexander + 1 other
ISBN: 9781285195698
Textbook Problem
1 views

Of several angles, the degree measures are related in this way: m J K L > m G H I (the measure of the angle JKL is greater than that of angle GHI), m G H I > m D E F and m D E F > m A B C . What conclusion does the Transitive Property of Inequality allow regarding m A B C and m J K L ?

To determine

To write:

The conclusion about the Transitive Property of Inequality allow regarding mABC and mJKL by using the given condiiton.

Explanation

Consider the following condition,

“Of several angles, the degree measures are related in this way: mJKL>mGHI (the measure of the angle JKL is greater than that of angle GHI), mGHI>mDEF and mDEF>mABC.”

Definition:

If a is less than b a<b if and only if there is a positive number p for which

a+p=b;

a is greater than b a>b if and only if b<a.

Transitive Property of Inequality:

For number a, b, and c, if a<b and b<c, then a<c.

First mJKL>mGHI then by using the definition to get mJKL=mGHI+p1...(1)

Then, mGHI>mDEF then by using the definition to get mGHI=mDEF+p2...(2)

Then mDEF>mABC then by using the definition to get mDEF=mABC+p3..

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started
Sect-A.1 P-11ESect-A.1 P-12ESect-A.1 P-13ESect-A.1 P-14ESect-A.1 P-15ESect-A.1 P-16ESect-A.1 P-17ESect-A.1 P-18ESect-A.1 P-19ESect-A.1 P-20ESect-A.1 P-21ESect-A.1 P-22ESect-A.1 P-23ESect-A.1 P-24ESect-A.1 P-25ESect-A.1 P-26ESect-A.1 P-27ESect-A.1 P-28ESect-A.1 P-29ESect-A.1 P-30ESect-A.1 P-31ESect-A.1 P-32ESect-A.2 P-1ESect-A.2 P-2ESect-A.2 P-3ESect-A.2 P-4ESect-A.2 P-5ESect-A.2 P-6ESect-A.2 P-7ESect-A.2 P-8ESect-A.2 P-9ESect-A.2 P-10ESect-A.2 P-11ESect-A.2 P-12ESect-A.2 P-13ESect-A.2 P-14ESect-A.2 P-15ESect-A.2 P-16ESect-A.2 P-17ESect-A.2 P-18ESect-A.2 P-19ESect-A.2 P-20ESect-A.2 P-21ESect-A.2 P-22ESect-A.2 P-23ESect-A.2 P-24ESect-A.2 P-25ESect-A.2 P-26ESect-A.2 P-27ESect-A.2 P-28ESect-A.2 P-29ESect-A.2 P-30ESect-A.2 P-31ESect-A.2 P-32ESect-A.2 P-33ESect-A.2 P-34ESect-A.2 P-35ESect-A.2 P-36ESect-A.3 P-1ESect-A.3 P-2ESect-A.3 P-3ESect-A.3 P-4ESect-A.3 P-5ESect-A.3 P-6ESect-A.3 P-7ESect-A.3 P-8ESect-A.3 P-9ESect-A.3 P-10ESect-A.3 P-11ESect-A.3 P-12ESect-A.3 P-13ESect-A.3 P-14ESect-A.3 P-15ESect-A.3 P-16ESect-A.3 P-17ESect-A.3 P-18ESect-A.3 P-19ESect-A.3 P-20ESect-A.3 P-21ESect-A.3 P-22ESect-A.3 P-23ESect-A.3 P-24ESect-A.3 P-25ESect-A.3 P-26ESect-A.3 P-27ESect-A.3 P-28ESect-A.3 P-29ESect-A.3 P-30ESect-A.3 P-31ESect-A.3 P-32ESect-A.4 P-1ESect-A.4 P-2ESect-A.4 P-3ESect-A.4 P-4ESect-A.4 P-5ESect-A.4 P-6ESect-A.4 P-7ESect-A.4 P-8ESect-A.4 P-9ESect-A.4 P-10ESect-A.4 P-11ESect-A.4 P-12ESect-A.4 P-13ESect-A.4 P-14ESect-A.4 P-15ESect-A.4 P-16ESect-A.4 P-17ESect-A.4 P-18ESect-A.4 P-19ESect-A.4 P-20ESect-A.4 P-21ESect-A.4 P-22ESect-A.4 P-23ESect-A.4 P-24ESect-A.4 P-25ESect-A.4 P-26ESect-A.4 P-27ESect-A.4 P-28ESect-A.4 P-29ESect-A.4 P-30ESect-A.4 P-31ESect-A.4 P-32ESect-A.4 P-33ESect-A.4 P-34ESect-A.4 P-35ESect-A.4 P-36ESect-A.4 P-37ESect-A.4 P-38ESect-A.4 P-39ESect-A.4 P-40ESect-A.4 P-41ESect-A.5 P-1ESect-A.5 P-2ESect-A.5 P-3ESect-A.5 P-4ESect-A.5 P-5ESect-A.5 P-6ESect-A.5 P-7ESect-A.5 P-8ESect-A.5 P-9ESect-A.5 P-10ESect-A.5 P-11ESect-A.5 P-12ESect-A.5 P-13ESect-A.5 P-14ESect-A.5 P-15ESect-A.5 P-16ESect-A.5 P-17ESect-A.5 P-18ESect-A.5 P-19ESect-A.5 P-20ESect-A.5 P-21ESect-A.5 P-22ESect-A.5 P-23ESect-A.5 P-24ESect-A.5 P-25ESect-A.5 P-26ESect-A.5 P-27ESect-A.5 P-28ESect-A.5 P-29ESect-A.5 P-30ESect-A.5 P-31ESect-A.5 P-32ESect-A.5 P-33ESect-A.5 P-34ESect-A.5 P-35ESect-A.5 P-36ESect-A.5 P-37ESect-A.5 P-38ESect-A.5 P-39E

Additional Math Solutions

Find more solutions based on key concepts

Show solutions add

Find f in terms of f and g. h(x) = f(g(sin 4x))

Single Variable Calculus: Early Transcendentals, Volume I

Solve the equations in Exercises 126. (x+1)2(2x+3)(x+1)(2x+3)2=0

Finite Mathematics and Applied Calculus (MindTap Course List)

Show by means of an example that limxa[f(x)+g(x)] may exist even though neither limxaf(x) nor limxag(x) exists....

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

If the point (3, 7) is on the graph of f, then f(3) = __________.

Precalculus: Mathematics for Calculus (Standalone Book)

If f(x) 0 for 1 x 6, then f is decreasing on (1, 6).

Single Variable Calculus: Early Transcendentals

A right triangle has one leg with constant length 8 cm. The length of the other leg is decreasing at 3 cm/sec. ...

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th