
Database System Concepts
7th Edition
ISBN: 9780078022159
Author: Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Question
Use the class MyArrayList to implement the interface MyList listed below using parallel streams and write a test program to test the methods. The class should be thread safe.
interface MyList{ public void add(E x);
public void add(List lst);
public boolean forAll(Predicate pr);
public boolean exists(Predicate pr);
public long count(Predicate pr);
public List map(Function fn);
public List filter(Predicate pr);
public List mapFilter(Function fn, Predicate pr);
}
class MyArrayList implements MyList {
private ArrayList data = new ArrayList<>();
…
}
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.Similar questions
- add public method size() to the class Stack so the output will be pop is: 4 peek is: 8 size is: 2 false public class Stack<T> { private LinkedList<T> list; public Stack() { list = new LinkedList<>(); } public boolean isEmpty() { return list.isEmpty(); } public void push(T data) { list.prepend(data); } public T pop() { if (isEmpty()) { throw new EmptyStackException(); } return list.removeHead(); } public T peek() { if (isEmpty()) { throw new EmptyStackException(); } return list.getHead(); } } public class Main { public static void main(String[] args) { Stack<Integer> stack = new Stack<>(); stack.push(6); stack.push(8); stack.push(4); System.out.println("pop is: " + stack.pop()); System.out.println("peek is: " + stack.peek()); System.out.println("size is: " +…arrow_forwardGiven main.py and an IntNode class, complete the IntList class (a linked list of IntNodes) by writing the insert_in_descending_order() method to insert new IntNodes into the IntList in descending order. Ex. If the input is: 3 4 2 5 1 6 7 9 8 the output is: 9 8 7 6 5 4 3 2 1 main.py(can not edit) from IntNode import IntNodefrom IntList import IntList if __name__ == "__main__": int_list = IntList() input_line = input() input_strings = input_line.split(' ') for num_string in input_strings: # Convert from string to integer num = int(num_string) # Insert into linked list in descending order new_node = IntNode(num) int_list.insert_in_descending_order(new_node) int_list.print_int_list() IntNode.py(can not edit) class IntNode: def __init__(self, initial_data, next = None, prev = None): self.data = initial_data self.next = next self.prev = prev IntList.py(need to edit)arrow_forwardEach of the iterators must implement the java.util.Iterator interface by providing the two public methods hasNext () and next(). The Iterator interface also lists two additional methods, remove () and forEachRemaining (). These are marked as default, so the interface itself does not require implementation. Of these methods, this assignment only requires you to implement the remove () method of the linked list iterator. 1 ArrayList iterator This is an external iterator, meaning it is a public class named ICS211ArrayListIterator, and and the code is not part of the ArrayList class. Your ICS211ArrayListIterator class should have a constructor ICS211ArrayListIterator(java.util.ArrayList gives access to all the elements of the array list. This array must be saved as the value of a class variable of the iterator. data). The constructor must call one of the two toArray methods of ArrayList to obtain an array that Other than this single call to java.util.ArrayList.toArray in the constructor,…arrow_forward
- In python. Write a LinkedList class that has recursive implementations of the add and remove methods. It should also have recursive implementations of the contains, insert, and reverse methods. The reverse method should not change the data value each node holds - it must rearrange the order of the nodes in the linked list (by changing the next value each node holds). It should have a recursive method named to_plain_list that takes no parameters (unless they have default arguments) and returns a regular Python list that has the same values (from the data attribute of the Node objects), in the same order, as the current state of the linked list. The head data member of the LinkedList class must be private and have a get method defined (named get_head). It should return the first Node in the list (not the value inside it). As in the iterative LinkedList in the exploration, the data members of the Node class don't have to be private. The reason for that is because Node is a trivial class…arrow_forwardGiven the tollowiıng class template detinition: template class linkedListType { public: const linked ListType& operator=(const linked ListType&); I/Overload the assignment operator. void initializeList(); /Initialize the list to an empty state. //Postcondition: first = nullptr, last = nullptr, count = 0; linked ListType(); Ildefault constructor //Initializes the list to an empty state. /Postcondition: first = nullptr, last = nullptr, count = 0; -linkedListīype(); Ildestructor /Deletes all the nodes from the list. //Postcondition: The list object is destroyed. protected: int count; //variable to store the number of elements in the list nodeType *first; //pointer to the first node of the list nodeType *last; //pointer to the last node of the list 1) Write initializeList() 2) Write linkedListType() 3) Write operator=0 4) Add the following function along with its definition: void rotate(); I/ Remove the first node of a linked list and put it at the end of the linked listarrow_forwardConsider the instance variables and constructors. Given Instance Variables and Constructors: public class SimpleLinkedList<E> implements SimpleList<E>, Iterable<E>, Serializable { // First Node of the List private Node<E> first; // Last Node of the List private Node<E> last; // Number of List Elements private int count; // Total Number of Modifications (Add and Remove Calls) private int modCount; /** * Creates an empty SimpleLinkedList. */ publicSimpleLinkedList(){ first = null; last = null; count = 0; modCount = 0; } ... Assume the class contains the following methods that work correctly: public boolean isEmpty() public int size() public boolean add(E e) public E get(int index) private void validateIndex(int index, int end) Complete the following methods based on the given information from above. /** * Adds an element to the list at the…arrow_forward
- Given the linked list data structure, implement a sub-class TSortedList that makes sure that elements are inserted and maintained in an ascending order in the list. So, given the input sequence {1,7,3,11,5}, when printing the list after inserting the last element it should print like 1, 3, 5, 7, 11. Note that with inheritance, you have to only care about the insertion situation as deletion should still be handled by the parent class.arrow_forwardGiven main() and an IntNode class, complete the IntList class (a linked list of IntNodes) by writing the insertInDescendingOrder() method to insert new IntNodes into the IntList in descending order. Ex. If the input is: 3 4 2 5 1 6 7 9 8 -1 the output is: 9 8 7 6 5 4 3 2 1 import java.util.Scanner; public class SortedList { public static void main (String[] args) {Scanner scnr = new Scanner(System.in);IntList intList = new IntList();IntNode curNode;int num; num = scnr.nextInt(); while (num != -1) {// Insert into linked list in descending order curNode = new IntNode(num);intList.insertInDescendingOrder(curNode);num = scnr.nextInt();}intList.printIntList();}}arrow_forwardWrite a recursive instance method isSorted that takes a Link parameter and determines whether a linked list is sorted in descending order or not (return a boolean value).arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Database System ConceptsComputer ScienceISBN:9780078022159Author:Abraham Silberschatz Professor, Henry F. Korth, S. SudarshanPublisher:McGraw-Hill EducationStarting Out with Python (4th Edition)Computer ScienceISBN:9780134444321Author:Tony GaddisPublisher:PEARSONDigital Fundamentals (11th Edition)Computer ScienceISBN:9780132737968Author:Thomas L. FloydPublisher:PEARSON
- C How to Program (8th Edition)Computer ScienceISBN:9780133976892Author:Paul J. Deitel, Harvey DeitelPublisher:PEARSONDatabase Systems: Design, Implementation, & Manag...Computer ScienceISBN:9781337627900Author:Carlos Coronel, Steven MorrisPublisher:Cengage LearningProgrammable Logic ControllersComputer ScienceISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education

Database System Concepts
Computer Science
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:McGraw-Hill Education

Starting Out with Python (4th Edition)
Computer Science
ISBN:9780134444321
Author:Tony Gaddis
Publisher:PEARSON

Digital Fundamentals (11th Edition)
Computer Science
ISBN:9780132737968
Author:Thomas L. Floyd
Publisher:PEARSON

C How to Program (8th Edition)
Computer Science
ISBN:9780133976892
Author:Paul J. Deitel, Harvey Deitel
Publisher:PEARSON

Database Systems: Design, Implementation, & Manag...
Computer Science
ISBN:9781337627900
Author:Carlos Coronel, Steven Morris
Publisher:Cengage Learning

Programmable Logic Controllers
Computer Science
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education