Introduction to Heat Transfer
Introduction to Heat Transfer
6th Edition
ISBN: 9780470501962
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 1, Problem 1.78P

A thin electrical heating element provides a uniform heat flux q o " to the outer surface of a duct through which airflows. The duct wall has a thickness of 10 mm and a thermal conductivity of 20 W/m K .

Chapter 1, Problem 1.78P, A thin electrical heating element provides a uniform heat flux qo to the outer surface of a duct

  1. At a particular location, the air temperature is 30 ° C and the convection heat transfer coefficient between the air and inner surface of the duct is 100 W/m 2 K . What heat flux q o " is required to maintain the inner surface of the duct at T i = 85 ° C? For the conditions of part (a), what is the temperature T o of the duct surface next to the heater?
  2. With T i = 85 ° C, compute and plot q o " and T o as a function of the air-side convection coefficient h for the range 10 h 200 W/m 2 K . Briefly discuss your results.

Blurred answer
Students have asked these similar questions
A steel tube with a thermal conductivity of 45 W/m.K carries a fluid at 200°C, with a convection heat transfer coefficient of 210 W/m2./K. The tube has an external diameter of 5 cm, a wall thickness of 1 cm and a length of 2 m. The ambient air and surroundings are at 25°C, with a convection heat transfer coefficient of 25 W/m2.K. Neglecting the effects of radiation, determine: 1) resistance by conduction through the pipe wall 2) the convection resistance inside the tube 3) The total heat transfer rate 4) The temperature of the outer surface of the tube 5) The total resistance considering the effects of radiation only on the outside, with the coefficient hr = 2W/m2.K 6) The new heat transfer rate, considering the effects of radiation, if an additional layer of 15 mm thick foam with a conductivity of 0.03 W/m.K is added to the system. 7) The critical insulation radius of the system after adding this insulating layer.
A steel tube with a thermal conductivity of 45 W/m.K carries a fluid at 200°C, with a convection heat transfer coefficient of 210 W/m2./K. The tube has an external diameter of 5 cm, a wall thickness of 1 cm and a length of 2 m. The ambient air and surroundings are at 25°C, with a convection heat transfer coefficient of 25 W/m2.K. Neglecting the effects of radiation, determine: 1) resistance by conduction through the pipe wall 2) the convection resistance inside the tube 3) The total heat transfer rate 4) The temperature of the outer surface of the tube Upload resolution images, please.
In a thermal power plant, a horizontal copper pipe of "D" diameter, "L" length and thickness 0.6 cm enters into the boiler that has the thermal conductivity as 0.33 W/mK. The boiler is maintained at 105C and temperature of the water that flows inside the pipe is at 28C. If the energy transfer (Q) is 118922 kJ in 6 hours.  Determine the Heat transfer rate, Surface area of the pipe and Diameter & Length of the pipe, if D = 0.016 L.  Change in Temperature (in K) = Heat Transfer Rate (in W) = Surface Area of the Pipe (m2) =

Chapter 1 Solutions

Introduction to Heat Transfer

Ch. 1 - The heat flux that is applied to one face of a...Ch. 1 - Prob. 1.12PCh. 1 - Prob. 1.13PCh. 1 - Prob. 1.14PCh. 1 - The 5-mm-thick bottom of a 200-mm-diameter pan may...Ch. 1 - Prob. 1.16PCh. 1 - For a boiling process such as shown in Figure...Ch. 1 - You've experienced convection cooling if you've...Ch. 1 - Prob. 1.19PCh. 1 - A wall has inner and outer surface temperatures of...Ch. 1 - An electric resistance heater is embedded in a...Ch. 1 - Prob. 1.22PCh. 1 - A transmission case measures W=0.30m on a side and...Ch. 1 - Prob. 1.24PCh. 1 - A common procedure for measuring the velocity of...Ch. 1 - Prob. 1.26PCh. 1 - Prob. 1.27PCh. 1 - Prob. 1.28PCh. 1 - Prob. 1.29PCh. 1 - Prob. 1.30PCh. 1 - Prob. 1.31PCh. 1 - Prob. 1.32PCh. 1 - Prob. 1.33PCh. 1 - Prob. 1.34PCh. 1 - An electrical resistor is connected to a battery,...Ch. 1 - Pressurized water pin=10bar,Tin=110C enters the...Ch. 1 - Consider the tube and inlet conditions of Problem...Ch. 1 - An internally reversible refrigerator has a...Ch. 1 - A household refrigerator operates with cold- and...Ch. 1 - Chips of width L=15mm on a side are mounted to a...Ch. 1 - Consider the transmission case of Problem 1.23,...Ch. 1 - One method for growing thin silicon sheets for...Ch. 1 - Heat is transferred by radiation and convection...Ch. 1 - Radioactive wastes are packed in a long,...Ch. 1 - An aluminum plate 4 mm thick is mounted in a...Ch. 1 - A blood warmer is to be used during the...Ch. 1 - Consider a carton of milk that is refrigerated at...Ch. 1 - The energy consumption associated with a home...Ch. 1 - Liquid oxygen, which hems a boiling point of 90 K...Ch. 1 - The emissivity of galvanized steel sheet, a common...Ch. 1 - Three electric resistance heaters of length...Ch. 1 - A hair dryer may be idealized as a circular duct...Ch. 1 - In one stage of an annealing process, 304...Ch. 1 - Convection ovens operate on the principle of...Ch. 1 - Annealing, an important step in semiconductor...Ch. 1 - In the thermal processing of semiconductor...Ch. 1 - A furnace for processing semiconductor materials...Ch. 1 - Single fuel cells such as the one of Example 1.5...Ch. 1 - Prob. 1.59PCh. 1 - Prob. 1.60PCh. 1 - Prob. 1.61PCh. 1 - A small sphere of reference-grade iron with a...Ch. 1 - A 50mm45mm20mm cell phone charger has a surface...Ch. 1 - A spherical, stainless steel (AISI 302) canister...Ch. 1 - Prob. 1.65PCh. 1 - Prob. 1.66PCh. 1 - A photovoltaic panel of dimension 2m4m is...Ch. 1 - Following the hot vacuum forming of a paper-pulp...Ch. 1 - Prob. 1.69PCh. 1 - Prob. 1.70PCh. 1 - Prob. 1.71PCh. 1 - The roof of a car in a parking lot absorbs a solar...Ch. 1 - Prob. 1.73PCh. 1 - Prob. 1.74PCh. 1 - Consider Problem 1.1. If the exposed cold surface...Ch. 1 - Prob. 1.76PCh. 1 - Prob. 1.77PCh. 1 - A thin electrical heating element provides a...Ch. 1 - Prob. 1.79PCh. 1 - Prob. 1.80PCh. 1 - Prob. 1.81PCh. 1 - The curing process of Example 1.9 involves...Ch. 1 - The diameter and surface emissivity of an...Ch. 1 - Bus bars proposed for use in a power transmission...Ch. 1 - A solar flux of 700W/m2 is incident on a...Ch. 1 - In considering the following problems involving...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license