Organic Chemistry
Organic Chemistry
8th Edition
ISBN: 9781305580350
Author: William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. Foote
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 10, Problem 10.20P

(a)

Interpretation Introduction

Interpretation:

Compound participating in hydrogen bonding, hydrogen-bond acceptors, and hydrogen-bond donors have to be stated.

Concept Introduction:

Hydrogen bonding: The attractive interactions between hydrogen atom bonded to an atom of high electronegativity (most commonly O or N) and a lone pair of electrons on another atom of electrons on another atom of high electronegativity (again, most commonly O or N).

Hydrogen-bond donors: The hydrogen atom that is attached to the high electronegative atom participates in hydrogen bond. Thus, that Hydrogen atom is known as hydrogen-bond donors.

Hydrogen-bond acceptor: The atom (high electronegative atom with lone pairs) to which the hydrogen atom is participated in hydrogen bond.

(b)

Interpretation Introduction

Interpretation:

Compound participating in hydrogen bonding, hydrogen-bond acceptors, and hydrogen-bond donors have to be stated.

Concept Introduction:

Hydrogen bonding: The attractive interactions between hydrogen atom bonded to an atom of high electronegativity (most commonly O or N) and a lone pair of electrons on another atom of electrons on another atom of high electronegativity (again, most commonly O or N).

Hydrogen-bond donors: The hydrogen atom that is attached to the high electronegative atom participates in hydrogen bond. Thus, that Hydrogen atom is known as hydrogen-bond donors.

Hydrogen-bond acceptor: The atom (high electronegative atom with lone pairs) to which the hydrogen atom is participated in hydrogen bond.

(c)

Interpretation Introduction

Interpretation:

Compound participating in hydrogen bonding, hydrogen-bond acceptors, and hydrogen-bond donors have to be stated.

Concept Introduction:

Hydrogen bonding: The attractive interactions between hydrogen atom bonded to an atom of high electronegativity (most commonly O or N) and a lone pair of electrons on another atom of electrons on another atom of high electronegativity (again, most commonly O or N).

Hydrogen-bond donors: The hydrogen atom that is attached to the high electronegative atom participates in hydrogen bond. Thus, that Hydrogen atom is known as hydrogen-bond donors.

Hydrogen-bond acceptor: The atom (high electronegative atom with lone pairs) to which the hydrogen atom is participated in hydrogen bond.

(d)

Interpretation Introduction

Interpretation:

Compound participating in hydrogen bonding, hydrogen-bond acceptors, and hydrogen-bond donors have to be stated.

Concept Introduction:

Hydrogen bonding: The attractive interactions between hydrogen atom bonded to an atom of high electronegativity (most commonly O or N) and a lone pair of electrons on another atom of electrons on another atom of high electronegativity (again, most commonly O or N).

Hydrogen-bond donors: The hydrogen atom that is attached to the high electronegative atom participates in hydrogen bond. Thus, that Hydrogen atom is known as hydrogen-bond donors.

Hydrogen-bond acceptor: The atom (high electronegative atom with lone pairs) to which the hydrogen atom is participated in hydrogen bond.

(e)

Interpretation Introduction

Interpretation:

Compound participating in hydrogen bonding, hydrogen-bond acceptors, and hydrogen-bond donors have to be stated.

Concept Introduction:

Hydrogen bonding: The attractive interactions between hydrogen atom bonded to an atom of high electronegativity (most commonly O or N) and a lone pair of electrons on another atom of electrons on another atom of high electronegativity (again, most commonly O or N).

Hydrogen-bond donors: The hydrogen atom that is attached to the high electronegative atom participates in hydrogen bond. Thus, that Hydrogen atom is known as hydrogen-bond donors.

Hydrogen-bond acceptor: The atom (high electronegative atom with lone pairs) to which the hydrogen atom is participated in hydrogen bond.

(f)

Interpretation Introduction

Interpretation:

Compound participating in hydrogen bonding, hydrogen-bond acceptors, and hydrogen-bond donors have to be stated.

Concept Introduction:

Hydrogen bonding: The attractive interactions between hydrogen atom bonded to an atom of high electronegativity (most commonly O or N) and a lone pair of electrons on another atom of electrons on another atom of high electronegativity (again, most commonly O or N).

Hydrogen-bond donors: The hydrogen atom that is attached to the high electronegative atom participates in hydrogen bond. Thus, that Hydrogen atom is known as hydrogen-bond donors.

Hydrogen-bond acceptor: The atom (high electronegative atom with lone pairs) to which the hydrogen atom is participated in hydrogen bond.

Blurred answer
Students have asked these similar questions
Bisphenol A is widely used as a building block in polymer synthesis and is found in the polycarbonate hard plastics of reusable drink containers, DVDs, cell phones, and other consumer goods. Bisphenol A is reported to have estrogenic activity, and its widespread occurrence in our environment is a potential concern. Describe one or two biochemical experiments that could be done to compare the activity of bisphenol A with that of its estradiol, its structural relative.
Ethyl butyrate, CH3CH2CH2CO2CH2CH3CH3CH2CH2CO2CH2CH3, is an artificial fruit flavor commonly used in the food industry for such flavors as orange and pineapple.  Its fragrance and taste are often associated with fresh orange juice, and thus it is most commonly used as orange flavoring. It can be produced by the reaction of butanoic acid with ethanol in the presence of an acid catalyst (H+H+): CH3CH2CH2CO2H(l)+CH2CH3OH(l)H+⟶CH3CH2CH2CO2CH2CH3(l)+H2O(l) Part A Given 7.30 gg of butanoic acid and excess ethanol, how many grams of ethyl butyrate would be synthesized, assuming a complete 100%% yield? Express your answer in grams to three significant figures.   Part B A chemist ran the reaction and obtained 5.95 gg  of ethyl butyrate. What was the percent yield? Express your answer as a percent to three significant figures.   Part C The chemist discovers a more efficient catalyst that can produce ethyl butyrate with a 78.0%% yield. How many grams would be produced from 7.30 gg of…
Ethyl butyrate, CH3CH2CH2CO2CH2CH3CH3CH2CH2CO2CH2CH3, is an artificial fruit flavor commonly used in the food industry for such flavors as orange and pineapple.  Its fragrance and taste are often associated with fresh orange juice, and thus it is most commonly used as orange flavoring. It can be produced by the reaction of butanoic acid with ethanol in the presence of an acid catalyst (H+H+): CH3CH2CH2CO2H(l)+CH2CH3OH(l)H+⟶CH3CH2CH2CO2CH2CH3(l)+H2O(l) Given 8.45 gg of butanoic acid and excess ethanol, how many grams of ethyl butyrate would be synthesized, assuming a complete 100%% yield? Express your answer in grams to three significant figures.   A chemist ran the reaction and obtained 5.50 gg  of ethyl butyrate. What was the percent yield? Express your answer as a percent to three significant figures.   The chemist discovers a more efficient catalyst that can produce ethyl butyrate with a 78.0%% yield. How many grams would be produced from 8.45 gg of butanoic acid and excess…

Chapter 10 Solutions

Organic Chemistry

Ch. 10.7 - Prob. AQCh. 10.7 - Prob. BQCh. 10.7 - Prob. CQCh. 10.7 - Prob. DQCh. 10.7 - Which step in the reaction would you expect to be...Ch. 10.7 - Prob. FQCh. 10.7 - Prob. GQCh. 10.8 - Prob. 10.11PCh. 10.8 - Prob. AQCh. 10.8 - Prob. BQCh. 10.8 - Prob. CQCh. 10.8 - Why does nature use a reagent as complex as NAD+...Ch. 10.8 - -Hydroxyketones and -hydroxyaldehydes are also...Ch. 10.9 - Write IUPAC names for these thiols.Ch. 10 - Which are secondary alcohols?Ch. 10 - Name each compound.Ch. 10 - Prob. 10.16PCh. 10 - Name and draw structural formulas for the eight...Ch. 10 - Arrange these compounds in order of increasing...Ch. 10 - Arrange these compounds in order of increasing...Ch. 10 - Prob. 10.20PCh. 10 - Prob. 10.21PCh. 10 - Arrange the compounds in each set in order of...Ch. 10 - Prob. 10.23PCh. 10 - The decalinols A and B can be equilibrated using...Ch. 10 - Prob. 10.25PCh. 10 - Select the stronger acid from each pair and...Ch. 10 - Prob. 10.27PCh. 10 - In each equilibrium, label the stronger acid, the...Ch. 10 - Write equations for the reaction of 1-butanol with...Ch. 10 - Write equations for the reaction of 2-butanol with...Ch. 10 - Prob. 10.31PCh. 10 - When (R)-2-butanol is left standing in aqueous...Ch. 10 - Two diastereomeric sets of enantiomers, A/B and...Ch. 10 - Acid-catalyzed dehydration of 3-methyl-2-butanol...Ch. 10 - Show how you might bring about the following...Ch. 10 - Propose a mechanism for the following pinacol...Ch. 10 - Prob. 10.37PCh. 10 - Show how each alcohol or diol can be prepared from...Ch. 10 - Dihydropyran is synthesized by treating...Ch. 10 - Show how to convert propene to each of these...Ch. 10 - Prob. 10.41PCh. 10 - Prob. 10.42PCh. 10 - The tosylate of a primary alcohol normally...Ch. 10 - Prob. 10.44PCh. 10 - Show how to convert cyclohexene to each compound...Ch. 10 - Prob. 10.46PCh. 10 - Ethanol (CH3CH2OH) and dimethyl ether (CH3OCH3)...Ch. 10 - Prob. 10.48PCh. 10 - Prob. 10.49PCh. 10 - Prob. 10.50PCh. 10 - Write the products of the following sequences of...Ch. 10 - Alcohols are important for organic synthesis,...Ch. 10 - Using your reaction roadmap as a guide, show how...Ch. 10 - Using your reaction roadmap as a guide, show how...Ch. 10 - Using your reaction roadmap as a guide, show how...Ch. 10 - Using your reaction roadmap as a guide, show how...Ch. 10 - Prob. 10.57PCh. 10 - Prob. 10.58PCh. 10 - Prob. 10.59P
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Organic Chemistry
Chemistry
ISBN:9781305580350
Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. Foote
Publisher:Cengage Learning
Text book image
Macroscale and Microscale Organic Experiments
Chemistry
ISBN:9781305577190
Author:Kenneth L. Williamson, Katherine M. Masters
Publisher:Brooks Cole
Text book image
Introduction to General, Organic and Biochemistry
Chemistry
ISBN:9781285869759
Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher:Cengage Learning