ORGANIC CHEMISTRY-ETEXT REG ACCESS
ORGANIC CHEMISTRY-ETEXT REG ACCESS
12th Edition
ISBN: 9781119308362
Author: Solomons
Publisher: WILEY
Question
Book Icon
Chapter 10, Problem 38P
Interpretation Introduction

Interpretation:

The radical mechanism for the given reaction is to be represented.

Concept introduction:

Electrophiles are electron-deficient species, which has positive or partially positive charge. Lewis acids are electrophiles, which accept electron pair.

Nucleophiles are electron-rich species, which has negative or partially negative charge. Lewis bases are nucleophiles, which donate electron pair.

Radical is an atom or molecule that has an unpaired valence electron. These unpaired electrons makes radical highly chemically reactive.

Substitution reaction: A reaction in which one of the hydrogen atoms of a hydrocarbon or a functional group is substituted by any other functional group is called substitution reaction.

Elimination reaction: A reaction in which two substituent groups are detached and a double bond is formed is called elimination reaction.

Addition reaction: It is the reaction in which unsaturated bonds are converted to saturated molecules by the addition of molecules.

Reduction is a process in which hydrogen atoms are added to a compound.

Homolytic fission is that fission in which each atom in the bond has an electron, which results in species called free radical.

In heterolytic fission, when covalent bond is broken, the shared pair of electron is taken by one of the atoms.

A type of halogenation in which alkanes and aromatics, which are alkyl substituted, react chemically in presence of light is known as free radical halogenation. It involves chain initiation, propagation, and termination steps in its whole mechanism. The free radical halogenation reaction is used in industries to synthesize dichloromethane and chloroform.

Blurred answer
Students have asked these similar questions
Analyze the different substitution products formed in case of furan when it is reacted with iodine. Write the reaction mechanism involved when furan reacted with iodine and evaluate the formation of products.
the following reaction scheme leads to the formation of compound B. give the structure of the final products and of the intermediate product A and justify, using the mechanism, the formation of these
Provide mechanisms for this reaction
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Pushing Electrons
Chemistry
ISBN:9781133951889
Author:Weeks, Daniel P.
Publisher:Cengage Learning
Text book image
Chemistry for Today: General, Organic, and Bioche...
Chemistry
ISBN:9781305960060
Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. Hansen
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9781305080485
Author:John E. McMurry
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9781305580350
Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. Foote
Publisher:Cengage Learning