Tutorials in Introductory Physics
Tutorials in Introductory Physics
1st Edition
ISBN: 9780130970695
Author: Peter S. Shaffer, Lillian C. McDermott
Publisher: Addison Wesley
bartleby

Videos

Textbook Question
Book Icon
Chapter 11.7, Problem 2eT

An observer is looking at a light source through two polarizers as shown in the side view diagram at right. The polarizers are crossed, that is, they are oriented so that the light transmitted through them has minimum intensity.
Chapter 11.7, Problem 2eT, An observer is looking at a light source through two polarizers as shown in the side view diagram at

1. Suppose that a third polarizer were inserted a, the position marked X, shown above.

Predict how, if at all, this change would affect the, intensity of the light reaching the observer. Does your answer depend on the orientation of the third polarizer? Discuss your reasoning with your partners.

Check your prediction experimentally. (Ask a tutorial instructor to show you the equipment that you need in order to do so.) If your prediction was incorrect, identify those parts of your prediction that were wrong.

How can you apply your results from part D to help you account for your observations? Support your answer with one or more diagrams.

2. Suppose that instead a third polarizer were inserted at the position marked Y, shown above.

Predict how, if at all, this change would affect the intensity of the light reaching the observer. Does your answer depend on the orientation of the third polarizer? Discuss your reasoning with your partners.

Blurred answer
Students have asked these similar questions
A plane wave hits a piece of glass whose front surface is spherical and whose back surface is plane. The radius of the lens is 10 cm and the thickness of the glass is 1 cm at the center, as shown in the diagram at right. At time t1, the center of the plane wavefront has just reached the lens. A short time later, at time t2, the center of the wavefront will have passed completely through the glass, as shown. a) Find the time that elapses between t1 and t2, the time it takes the center of the wavefront to pass thorugh the middle 1 cm of the glass.  b) Find the amount by which the edges of the wavefront at t2 will be ahead of the cetner of the wavefront, due to the fact that these edges passed through empty space, with no glass in their paths.
What angle is needed between the direction of polarized light and the axis of a polarizing filter to reduce its intensity by 68%? Write your pourcentage with 3 sig fig.       Please show full work!!
Hi! Please read everything first before answering. Read carefully as well because you might be confused.I asked this question already here in Bartleby but I have not received the exact answer The question is:Unpolarized light with intensity I₀ is incident on two polarizers as sketched in Figure B. Suppose the angle between the axes of the two polarizers is θ = 60°. What is the intensity of the transmitted light? EXPRESS YOUR ANSWER AS A FRACTION OF I₀. And I got the answer 0.125 I₀. The question says THE ANSWER SHOULD BE EXPRESSED AS A FRACTION OF I₀. The answer I got is decimal and i don't know how i will turn it to fraction. I am not sure if converting it to fraction is correct so I am seeking for your help. Please help me. What I just need is TO EXPRESS MY ANSWER AS A FRACTION OF I₀. Thank you!

Chapter 11 Solutions

Tutorials in Introductory Physics

Ch. 11.2 - Prob. 2aTCh. 11.2 - Obtain an enlargement of the diagram at right that...Ch. 11.2 - Suppose that the width of one of the slits were...Ch. 11.2 - Red light from a distant point source is incident...Ch. 11.2 - Compare the situation in part II (in which a...Ch. 11.2 - For each of the lettered points, determine D (in...Ch. 11.2 - Suppose that one of the slits were covered. At...Ch. 11.2 - The pattern produced by red light passing through...Ch. 11.2 - Consider point B, the first maximum to the left of...Ch. 11.3 - Red light from a distant point source is incident...Ch. 11.3 - In a previous homework, you found an expression...Ch. 11.3 - Suppose that the screen were semicircular, as...Ch. 11.3 - Consider a point M on the distant screen where...Ch. 11.3 - Consider a point N on the screen where there is a...Ch. 11.3 - Obtain a set of transparencies of sinusoidal...Ch. 11.3 - Suppose that coherent red light were incident on a...Ch. 11.3 - Generalize your results from the 2-slit, 3-slit,...Ch. 11.3 - Coherent red light is incident on a mask with two...Ch. 11.3 - Prob. 3dTCh. 11.4 - Red light from a distant point source is incident...Ch. 11.4 - Suppose that point X marks the location of the...Ch. 11.4 - Suppose that only slit 1 is uncovered, and all...Ch. 11.4 - Show how you could group all ten slits into five...Ch. 11.4 - Suppose that the number of slits is doubled and...Ch. 11.4 - If we continued to add slits in this way (i.e.,...Ch. 11.4 - How is this pattern different from what you would...Ch. 11.4 - Consider the following dialogue: Student 1: "l...Ch. 11.4 - The photograph at right shows the diffraction...Ch. 11.4 - The photograph at right shows the diffraction...Ch. 11.4 - Describe what you would see on the screen if the...Ch. 11.4 - If a diffraction pattern has several minima (like...Ch. 11.4 - In part A, you drew a diagram that showed how find...Ch. 11.4 - Use the model that we have developed to write an...Ch. 11.5 - The minima that occur in the case of a single slit...Ch. 11.5 - Consider the following dispute between two physics...Ch. 11.5 - A second slit, identical in size to the first, is...Ch. 11.5 - Both slits are now uncovered. For what angles will...Ch. 11.5 - Suppose that the width of both slit, a, were...Ch. 11.5 - Suppose instead that the distance between the...Ch. 11.5 - The four graphs from part C that show relative...Ch. 11.5 - Consider the relative intensity graph shown at...Ch. 11.5 - Consider the following comment made by a student:...Ch. 11.5 - You may have already noticed that the maxima are...Ch. 11.6 - Prob. 1TCh. 11.6 - Prob. 2aTCh. 11.6 - When comparing two materials of different indices...Ch. 11.6 - Consider light incident on a thin soap film, as...Ch. 11.6 - Light of frequency f=7.51014Hz is incident on the...Ch. 11.6 - Suppose that an observer were located on the left...Ch. 11.6 - Observer A is looking at the part of the film that...Ch. 11.6 - Observer B is looking at the part of the film that...Ch. 11.6 - Observer C is looking at the thinnest part of the...Ch. 11.6 - Describe the appearance of the film as a whole.Ch. 11.6 - What are the three smallest film thickness for...Ch. 11.6 - The thickness of the film is 1650 nm at the bottom...Ch. 11.7 - Look at the room lights through one of the...Ch. 11.7 - Hold a second polarizing filter in front of the...Ch. 11.7 - Do the room lights produce polarized light?...Ch. 11.7 - Suppose that you had two marked polarizers (i.e.,...Ch. 11.7 - Suppose that you had a polarizer with its...Ch. 11.7 - Prob. 2dTCh. 11.7 - An observer is looking at a light source through...Ch. 11.7 - Consider a beam of unpolarized light that is...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Domestic Electric Circuits; Author: PrepOnGo Class 10 & 12;https://www.youtube.com/watch?v=2ZvWaloQ3nk;License: Standard YouTube License, CC-BY