BuyFindarrow_forward

General Chemistry - Standalone boo...

11th Edition
Steven D. Gammon + 7 others
ISBN: 9781305580343

Solutions

Chapter
Section
BuyFindarrow_forward

General Chemistry - Standalone boo...

11th Edition
Steven D. Gammon + 7 others
ISBN: 9781305580343
Textbook Problem

You have an aqueous, dilute solution of a nonvolatile nonelectrolyte. Assuming that the solution is ideal, choose the following statement(s) that are true.

  1. a If the concentration of the solute is increased, then the osmotic pressure of the solution will increase.
  2. b The addition of more solute will cause an increase in the boiling point of the solution.
  3. c The vapor pressure of this solution would decrease if some of the water were allowed to evaporate.
  4. d The solution will freeze at a temperature below 0°C at 1.0 atm.
  5. e The addition of pure water to the solution will cause the boiling point to decrease.

Interpretation Introduction

Interpretation:

An aqueous dilute solution of a non-volatile non electrolyte is assumed to be of ideal solution. The correct statement has to be chosen from the following options -

  1. (a) If the concentration of the solute is increases, then the osmotic pressure of the solution will increase.
  2. (b) The addition of more solute will cause an increase in the boiling point of solution.
  3. (c) The vapor pressure of the solution would decrease if some of the water were allowed to evaporate.
  4. (d) The solution will freeze at temperature below 0°C at 1 atm.
  5. (e) The addition of pure water to the solution will cause the boiling point to decrease.

Concept Introduction:

  • In the process of osmosis, the solvent molecules pass through a semi - permeable membrane from less concentrated solution to more concentrated solution.  The pressure that has to be applied to prevent the flow of solvent molecules is called osmotic pressure.  It is expressed as,

π = MRT

Where,

π = osmotic pressureM = Molar concentrationR =  Universal gas constantT =   Temperature

  • Boiling point of a liquid substance is defined as the temperature at which the vapor pressure of the liquid becomes equal to the atmospheric pressure.

Boiling point of a substance can be determined by the formula, ΔTb = iKbm .

Where,

ΔTb = elevation of boiling pointKb  = ebullioscopic constantm    = molality of the solution; i = Van't Hoff factor

  • Vapor pressure of a substance is known as the pressure exerted by molecules on the vapor phase when they are in equilibrium with their actual phase which can be liquid or solid.

A substance is said to be volatile if it vaporizes readily at room temperature itself.  Such substances have high vapor pressure as most of its molecules tend to exist in vapor phase.  A substance is said to be non-volatile if it doesn’t vaporize spontaneously and remains stable.

Vapor pressure of a volatile solvent can be lowered by addition of a non-volatile solute. Raoult’s law deals with the vapor pressure of pure solvents and solution which states –

Partial pressure of solvent is equivalent to the product of vapor pressure of the solvent in its pure state and mole fraction of solvent in the solution.  It is expressed as,

PA = PA° XA

Where,

PA = Partial vapor pressure of solvent in solutionPA° = Vapor pressure of pure solventXA= mole fraction of solvent in the solution

When the solute is non-volatile, the vapor pressure of the whole solution is equal to PA.

The lowering of vapor pressure of the solvent due to the addition of non-volatile solute is expressed as,

ΔP = PA° XB

Where,

  XB is the mole fraction of the solute.

  • Freezing point of the substance is temperature at which liquid substance remains in equilibrium with solid substance.

    Freezing point of a substance can be determined by the formula, ΔTf = iKfm .

    Where,

    ΔTf = depression in freezing pointKf  = cryoscopic constantm    = molality of the solution; i = Van't Hoff factor

Explanation

Reason for correct answers:

(a)

Since osmotic pressure of the solution is directly proportional to the concentration of the non-volatile solute, increase in concentration caused by addition of more solute results in increase in osmotic pressure of the solution.  Hence statement a is true.

(b)

Boiling point of a substance can be determined by the formula ΔTb = iKbm . Greater the value of ΔTb , greater will be the boiling point of the substance.  According to the formula, ΔTb is directly proportional to concentration of the solute.  Thus increase in concentration results in increase in boiling of the solution

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started

Chapter 12 Solutions

Show all chapter solutions add
Sect-12.4 P-12.7ESect-12.4 P-12.8ESect-12.4 P-12.9ESect-12.4 P-12.10ESect-12.4 P-12.11ESect-12.5 P-12.12ESect-12.5 P-12.5CCSect-12.6 P-12.13ESect-12.6 P-12.14ESect-12.6 P-12.15ESect-12.7 P-12.16ESect-12.7 P-12.6CCSect-12.8 P-12.17ESect-12.8 P-12.7CCSect-12.9 P-12.18ESect-12.9 P-12.8CCCh-12 P-12.1QPCh-12 P-12.2QPCh-12 P-12.3QPCh-12 P-12.4QPCh-12 P-12.5QPCh-12 P-12.6QPCh-12 P-12.7QPCh-12 P-12.8QPCh-12 P-12.9QPCh-12 P-12.10QPCh-12 P-12.11QPCh-12 P-12.12QPCh-12 P-12.13QPCh-12 P-12.14QPCh-12 P-12.15QPCh-12 P-12.16QPCh-12 P-12.17QPCh-12 P-12.18QPCh-12 P-12.19QPCh-12 P-12.20QPCh-12 P-12.21QPCh-12 P-12.22QPCh-12 P-12.23QPCh-12 P-12.24QPCh-12 P-12.25QPCh-12 P-12.26QPCh-12 P-12.27QPCh-12 P-12.28QPCh-12 P-12.29QPCh-12 P-12.30QPCh-12 P-12.31QPCh-12 P-12.32QPCh-12 P-12.33QPCh-12 P-12.34QPCh-12 P-12.35QPCh-12 P-12.36QPCh-12 P-12.37QPCh-12 P-12.38QPCh-12 P-12.39QPCh-12 P-12.40QPCh-12 P-12.41QPCh-12 P-12.42QPCh-12 P-12.43QPCh-12 P-12.44QPCh-12 P-12.45QPCh-12 P-12.46QPCh-12 P-12.47QPCh-12 P-12.48QPCh-12 P-12.49QPCh-12 P-12.50QPCh-12 P-12.51QPCh-12 P-12.52QPCh-12 P-12.53QPCh-12 P-12.54QPCh-12 P-12.55QPCh-12 P-12.56QPCh-12 P-12.57QPCh-12 P-12.58QPCh-12 P-12.59QPCh-12 P-12.60QPCh-12 P-12.61QPCh-12 P-12.62QPCh-12 P-12.63QPCh-12 P-12.64QPCh-12 P-12.65QPCh-12 P-12.66QPCh-12 P-12.67QPCh-12 P-12.68QPCh-12 P-12.69QPCh-12 P-12.70QPCh-12 P-12.71QPCh-12 P-12.72QPCh-12 P-12.73QPCh-12 P-12.74QPCh-12 P-12.75QPCh-12 P-12.76QPCh-12 P-12.77QPCh-12 P-12.78QPCh-12 P-12.79QPCh-12 P-12.80QPCh-12 P-12.81QPCh-12 P-12.82QPCh-12 P-12.83QPCh-12 P-12.84QPCh-12 P-12.85QPCh-12 P-12.86QPCh-12 P-12.87QPCh-12 P-12.88QPCh-12 P-12.89QPCh-12 P-12.90QPCh-12 P-12.91QPCh-12 P-12.92QPCh-12 P-12.93QPCh-12 P-12.94QPCh-12 P-12.95QPCh-12 P-12.96QPCh-12 P-12.97QPCh-12 P-12.98QPCh-12 P-12.99QPCh-12 P-12.100QPCh-12 P-12.101QPCh-12 P-12.102QPCh-12 P-12.103QPCh-12 P-12.104QPCh-12 P-12.105QPCh-12 P-12.106QPCh-12 P-12.107QPCh-12 P-12.108QPCh-12 P-12.109QPCh-12 P-12.110QPCh-12 P-12.111QPCh-12 P-12.112QPCh-12 P-12.113QPCh-12 P-12.114QPCh-12 P-12.115QPCh-12 P-12.116QPCh-12 P-12.117QPCh-12 P-12.118QPCh-12 P-12.119QPCh-12 P-12.120QPCh-12 P-12.121QPCh-12 P-12.122QPCh-12 P-12.123QPCh-12 P-12.124QPCh-12 P-12.125QPCh-12 P-12.126QPCh-12 P-12.127QPCh-12 P-12.128QPCh-12 P-12.129QPCh-12 P-12.130QPCh-12 P-12.131QPCh-12 P-12.132QPCh-12 P-12.133QPCh-12 P-12.134QPCh-12 P-12.135QPCh-12 P-12.136QPCh-12 P-12.137QPCh-12 P-12.138QPCh-12 P-12.139QPCh-12 P-12.140QPCh-12 P-12.141QPCh-12 P-12.142QP

Additional Science Solutions

Find more solutions based on key concepts

Show solutions add

Fried fish from fast-food restaurants and frozen fried fish products are often low in omega-3 and high in solid...

Nutrition: Concepts and Controversies - Standalone book (MindTap Course List)

A(n) ________ substance repels water. a. acidic b. basic c. hydrophobic d. polar

Biology: The Unity and Diversity of Life (MindTap Course List)

How are length and time used to describe motion?

An Introduction to Physical Science

How many autosomes are present in a body cell of a human being? In a gamete?

Human Heredity: Principles and Issues (MindTap Course List)

___ attach mosses to soil. a. Rhizoids b. Rhizomes c. Roots d. Strobili

Biology: The Unity and Diversity of Life (MindTap Course List)

A racing car travels on a circular track of radius 250 m. Assuming the car moves with a constant speed of 45.0 ...

Physics for Scientists and Engineers, Technology Update (No access codes included)