Fundamentals of Geotechnical Engineering (MindTap Course List)
Fundamentals of Geotechnical Engineering (MindTap Course List)
5th Edition
ISBN: 9781305635180
Author: Braja M. Das, Nagaratnam Sivakugan
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 15, Problem 15.21P

Determine the factor of safety against bottom heave for the braced cut described in Problem 15.18. Use Eqs. (15.66) and (15.70). For Eq. (15.70), assume the length of the cut, L = 18 m.

15.18 Refer to Figure 15.51 in which γ = 17.5 kN/m3, c = 60 kN/m2, and center-to-center spacing of struts is 5 m. Draw the earth pressure envelope and determine the strut loads at levels A, B, and C.

Chapter 15, Problem 15.21P, Determine the factor of safety against bottom heave for the braced cut described in Problem 15.18.

FIG. 15.51

Blurred answer
Students have asked these similar questions
Q9.1 -  A 25-m high rock cut with a face angle of 60° has been excavated in a massive, very weak volcanic tuff. A tension crack has opened behind the crest and it is likely that the slope is on the point of failure, that is, the factor of safety is approx imately 1.0. The friction angle of the material is estimated to be 35°, its density is 25kN / (m ^ 3) and the position of the water table is shown on the sketch of the slope (Figure 4). The rock contains no continuous joints dipping out of the face, and the most likely type of failure mode is circular failure. Required- (a) Carry out a back analysis of the failure to determine the limiting value of the cohesion when the factor of safety is 1.0. (b) Using the strength parameters calculated in (a), determine the factor of safety for a completely drained slope. Would drainage of the slope be a feasible method of stabilization?  (c) Using the ground water level shown in Figure 4 and the strength parameters calculated in (a), calculate the…
Q.1. Refer to the infinite slope shown in Figure 1. Given: β = 19 ͦ, ɣ = 20 kN/m3 , Ø = 33 ͦ, and c’ = 47 kN/m2 . Find the height, H, such that a factor of safety, Fs = 3.1 is maintained against sliding along the soil-rock interface. Also Determine the thrust on the wall if the water table rises to a level 2 m below the surface of the sand. The saturated unit weight of the sand is 20 kN/m3 .
A vertical retaining wall 6 m high is supporting a horizontal backfill having a weight of 16.5 kN/m3 and a saturated unit weight of 19kN/m3. Angle of internal friction of backfill is 30°. Ground water table is located 3m below the ground surface. Determine the at rest lateral earth force per meter length.Determine the location of the resultant force.Determine the at rest lateral earth force per meter length if it carries a surcharge of 50 KPa.   INCLUDE FBD.
Knowledge Booster
Background pattern image
Civil Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Text book image
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781305081550
Author:Braja M. Das
Publisher:Cengage Learning
Text book image
Principles of Geotechnical Engineering (MindTap C...
Civil Engineering
ISBN:9781305970939
Author:Braja M. Das, Khaled Sobhan
Publisher:Cengage Learning
Text book image
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
How to build angle braces; Author: Country Living With The Harnish's;https://www.youtube.com/watch?v=3cKselS6rxY;License: Standard Youtube License