Organic Chemistry: Principles and Mechanisms (Second Edition)
Organic Chemistry: Principles and Mechanisms (Second Edition)
2nd Edition
ISBN: 9780393663556
Author: Joel Karty
Publisher: W. W. Norton & Company
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 17, Problem 17.55P
Interpretation Introduction

(a)

Interpretation:

The complete mechanism for the reaction between the given Wittig reagent and benzaldehyde is to be drawn.

Concept introduction:

Wittig reactions generate the carbon double(C = C) bond by joining two carbon-containing groups - one from the Wittig reagent and the second from the aldehyde or ketone. In a Wittig reaction, the carbonyl (C=O) bond of aldehyde or ketone is converted o a (C = C) bond. In step one, the negatively charged C atom from the Wittig reagent attacks the aldehyde and produces a betaine, that is, the species in which negative charge is present on O atom and a positive charge on P atom. In step two, a bond is formed between a positively charged P atom and negatively charged O atom. This results in an oxaphosphetane that contains a four-membered ring. Due to the ring strain, strainoxaphosphetane converts to alkene and triphenylphosphine oxide in the final step.

Interpretation Introduction

(b)

Interpretation:

The complete mechanism for the reaction between given Wittig reagent and benzaldehyde is to be drawn.

Concept introduction:

Wittig reactions generate the carbon double(C = C) bond by joining the two carbon-containing groups - one from the Wittig reagent and the second from the aldehyde or ketone. In a Wittig reaction, the carbonyl (C=O) bond of aldehyde or ketone is converted to a (C = C) bond. In step one, the negatively charged C atom from the Wittig reagent attacks the aldehyde and produces a betaine, that is species in which negative charge is present on O atom and a positive charge is on P atom. In step two, a bond is formed between a positively charged P atom and negatively charged O atom. This results in an oxaphosphetane that contains a four-membered ring. Due to the ring strain oxaphosphetane converts into the alkene and triphenylphosphine oxide in the final step.

Interpretation Introduction

(c)

Interpretation:

The complete mechanism for the reaction between given Wittig reagent and benzaldehyde is to be drawn.

Concept introduction:

Wittig reactions generate the carbon double(C = C) bond by joining the two carbon-containing groups - one from the Wittig reagent and the second from the aldehyde or ketone. In a Wittig reaction, the carbonyl (C=O) bond of aldehyde or ketone is converted to a (C = C) bond. In step one, the negatively charged C atom from the Wittig reagent attacks on the aldehyde and produces a betaine, that is species in which negative charge is present on O atom and a positive charge on P atom. In step two, a bond is formed between a positively charged P atom and negatively charged O atom. This results in an oxaphosphetane that contains a four-membered ring. Due to the ring strain, oxaphosphetane converts into the alkene and triphenylphosphine oxide in the final step.

Blurred answer
Students have asked these similar questions
Draw a stepwise detailed mechanism that illustrates how four organic products are formed in the following reaction.
Draw a reasonable mechanism for the following reaction:
Draw a reasonable mechanism for the following reaction (cat. = catalytic amount).

Chapter 17 Solutions

Organic Chemistry: Principles and Mechanisms (Second Edition)

Ch. 17 - Prob. 17.11PCh. 17 - Prob. 17.12PCh. 17 - Prob. 17.13PCh. 17 - Prob. 17.14PCh. 17 - Prob. 17.15PCh. 17 - Prob. 17.16PCh. 17 - Prob. 17.17PCh. 17 - Prob. 17.18PCh. 17 - Prob. 17.19PCh. 17 - Prob. 17.20PCh. 17 - Prob. 17.21PCh. 17 - Prob. 17.22PCh. 17 - Prob. 17.23PCh. 17 - Prob. 17.24PCh. 17 - Prob. 17.25PCh. 17 - Prob. 17.26PCh. 17 - Prob. 17.27PCh. 17 - Prob. 17.28PCh. 17 - Prob. 17.29PCh. 17 - Prob. 17.30PCh. 17 - Prob. 17.31PCh. 17 - Prob. 17.32PCh. 17 - Prob. 17.33PCh. 17 - Prob. 17.34PCh. 17 - Prob. 17.35PCh. 17 - Prob. 17.36PCh. 17 - Prob. 17.37PCh. 17 - Prob. 17.38PCh. 17 - Prob. 17.39PCh. 17 - Prob. 17.40PCh. 17 - Prob. 17.41PCh. 17 - Prob. 17.42PCh. 17 - Prob. 17.43PCh. 17 - Prob. 17.44PCh. 17 - Prob. 17.45PCh. 17 - Prob. 17.46PCh. 17 - Prob. 17.47PCh. 17 - Prob. 17.48PCh. 17 - Prob. 17.49PCh. 17 - Prob. 17.50PCh. 17 - Prob. 17.51PCh. 17 - Prob. 17.52PCh. 17 - Prob. 17.53PCh. 17 - Prob. 17.54PCh. 17 - Prob. 17.55PCh. 17 - Prob. 17.56PCh. 17 - Prob. 17.57PCh. 17 - Prob. 17.58PCh. 17 - Prob. 17.59PCh. 17 - Prob. 17.60PCh. 17 - Prob. 17.61PCh. 17 - Prob. 17.62PCh. 17 - Prob. 17.63PCh. 17 - Prob. 17.64PCh. 17 - Prob. 17.65PCh. 17 - Prob. 17.66PCh. 17 - Prob. 17.67PCh. 17 - Prob. 17.68PCh. 17 - Prob. 17.69PCh. 17 - Prob. 17.70PCh. 17 - Prob. 17.71PCh. 17 - Prob. 17.72PCh. 17 - Prob. 17.73PCh. 17 - Prob. 17.74PCh. 17 - Prob. 17.75PCh. 17 - Prob. 17.76PCh. 17 - Prob. 17.77PCh. 17 - Prob. 17.78PCh. 17 - Prob. 17.79PCh. 17 - Prob. 17.80PCh. 17 - Prob. 17.81PCh. 17 - Prob. 17.82PCh. 17 - Prob. 17.83PCh. 17 - Prob. 17.84PCh. 17 - Prob. 17.1YTCh. 17 - Prob. 17.2YTCh. 17 - Prob. 17.3YTCh. 17 - Prob. 17.4YTCh. 17 - Prob. 17.5YTCh. 17 - Prob. 17.6YTCh. 17 - Prob. 17.7YTCh. 17 - Prob. 17.8YTCh. 17 - Prob. 17.9YTCh. 17 - Prob. 17.10YTCh. 17 - Prob. 17.11YTCh. 17 - Prob. 17.12YTCh. 17 - Prob. 17.13YTCh. 17 - Prob. 17.14YT
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Organic Chemistry: A Guided Inquiry
Chemistry
ISBN:9780618974122
Author:Andrei Straumanis
Publisher:Cengage Learning
How to Design a Total Synthesis; Author: Chemistry Unleashed;https://www.youtube.com/watch?v=9jRfAJJO7mM;License: Standard YouTube License, CC-BY