Physics for Scientists and Engineers, Technology Update (No access codes included)
Physics for Scientists and Engineers, Technology Update (No access codes included)
9th Edition
ISBN: 9781305116399
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 21, Problem 21.68AP

(a)

To determine

The molar specific heat at constant volume if the molecules are linear.

(b)

To determine

The molar specific heat at constant volume if the molecules are nonlinear.

(c)

To determine

The high temperature molar specific heat at constant volume for a triatomic ideal gas of linear molecules.

(d)

To determine

The high temperature molar specific heat at constant volume for a triatomic ideal gas of nonlinear molecules.

(e)

To determine

The way by which the specific heat data is used to determine whether a triatomic molecule is linear or non-linear and check whether the data in Table 20.2 is sufficient to make this determination.

Blurred answer
Students have asked these similar questions
Consider 1.5 mol of pure nitrogen gas N2 which we will treat as a diatomic ideal gas. From 100 K to 1000 K, the gas has three translational and two rotational degrees of freedom. Above 1000 K, there are two additional vibrational degrees of freedom. The molar mass of N2 is 0.028 kg/mol. a. If the nitrogen molecules have an rms translational molecular speed of 511 m/s, what is the temperature of the gas? b. What is the internal energy U of the nitrogen gas at the temperature from part a? c. If the nitrogen gas has a pressure of 1.2 atm, what volume (in liters) does it occupy at the temperature from part a? d How much heat would be required to raise the temperature of the gas from 1500 K to 1800 K, at a constant volume? Remember that vibrational degrees of freedom are active at these temperatures.
You measure the average free path λ and the average collision time τ of the molecules of a diatomic gas of molecular mass 6.00 × 10-²⁵ kg and radius r = 1.0 x 10-¹⁰ m. From these microscopic data can we obtain macroscopic properties such as temperature T and pressure P? If so, consider λ = 4.32 x 10-⁸ m and τ = 3.00 x 10-¹⁰ s and calculate T and P. indicate the correct answer: 1- Not possible2- Yes, T =150 K and P ~ 2.04 atm.3- Yes, T = 150 K and P ~ 4.08 atm.4- Yes, T = 300 K and P ~ 4.08 atm.5- Yes, T = 300 K and P ~ 5.32 atm6- Yes, T = 400 K and P ~ 4.08 atm.7- Yes, T = 400 K and P ~ 5.32 atm.   obs.:  If necessary, consider: R = 8.314 J/mol∙K1 cal = 4.19 Jkb =1,38 x 10⁻²³ m² kg s⁻² K⁻¹
For this question there could be one or MULTIPLE answers, Choose the best Match/Matches. For a monatomic ideal gas in thermal equilibrium near room temperature,   a. U = 3/2 NkT.   b. U = 5/2 NkT.   c. degrees of freedom include translational and rotational motions.   d. degrees of freedom include translational, rotational, and vibrational motions.   e. U = 5/2 pV.   f. U = 3/2 pV. Explain work please.

Chapter 21 Solutions

Physics for Scientists and Engineers, Technology Update (No access codes included)

Ch. 21 - A sample of gas with a thermometer immersed in the...Ch. 21 - Prob. 21.8OQCh. 21 - Which of the assumptions below is not made in the...Ch. 21 - Hot air rises, so why does it generally become...Ch. 21 - Prob. 21.2CQCh. 21 - When alcohol is rubbed on your body, it lowers...Ch. 21 - What happens to a helium-filled latex balloon...Ch. 21 - Which is denser, dry air or air saturated with...Ch. 21 - One container is filled with helium gas and...Ch. 21 - Daltons law of partial pressures states that the...Ch. 21 - (a) How many atoms of helium gas fill a spherical...Ch. 21 - A cylinder contains a mixture of helium and argon...Ch. 21 - Prob. 21.3PCh. 21 - In an ultrahigh vacuum system (with typical...Ch. 21 - A spherical balloon of volume 4.00 103 cm3...Ch. 21 - A spherical balloon of volume V contains helium at...Ch. 21 - A 2.00-mol sample of oxygen gas is confined to a...Ch. 21 - Oxygen, modeled as an ideal gas, is in a container...Ch. 21 - Prob. 21.9PCh. 21 - The rms speed of an oxygen molecule (O2) in a...Ch. 21 - A 5.00-L vessel contains nitrogen gas at 27.0C and...Ch. 21 - A 7.00-L vessel contains 3.50 moles of gas at a...Ch. 21 - In a period of 1.00 s, 5.00 1023 nitrogen...Ch. 21 - In a constant-volume process, 209 J of energy is...Ch. 21 - A sample of a diatomic ideal gas has pressure P...Ch. 21 - Review. A house has well-insulated walls. It...Ch. 21 - A 1.00-mol sample of hydrogen gas is healed at...Ch. 21 - A vertical cylinder with a heavy piston contains...Ch. 21 - Calculate the change in internal energy of 3.00...Ch. 21 - A 1.00-L insulated bottle is full of tea at 90.0C....Ch. 21 - Review. This problem is a continuation of Problem...Ch. 21 - A certain molecule has f degrees of freedom. Show...Ch. 21 - In a crude model (Fig. P21.23) of a rotating...Ch. 21 - Why is the following situation impossible? A team...Ch. 21 - Prob. 21.25PCh. 21 - A 2.00-mol sample of a diatomic ideal gas expands...Ch. 21 - During the compression stroke of a certain...Ch. 21 - How much work is required to compress 5.00 mol of...Ch. 21 - Air in a thundercloud expands as it rises. If its...Ch. 21 - Why is the following situation impossible? A new...Ch. 21 - During the power stroke in a four-stroke...Ch. 21 - Air (a diatomic ideal gas) at 27.0C and...Ch. 21 - A 4.00-L sample of a diatomic ideal gas with...Ch. 21 - Prob. 21.34PCh. 21 - Prob. 21.35PCh. 21 - Fifteen identical particles have various speeds:...Ch. 21 - Prob. 21.37PCh. 21 - Prob. 21.38PCh. 21 - Prob. 21.39PCh. 21 - Consider a container of nitrogen gas molecules at...Ch. 21 - Prob. 21.41PCh. 21 - Prob. 21.42PCh. 21 - The law of atmospheres states that the number...Ch. 21 - Prob. 21.44APCh. 21 - Prob. 21.45APCh. 21 - The dimensions of a classroom are 4.20 m 3.00 m ...Ch. 21 - The Earths atmosphere consists primarily of oxygen...Ch. 21 - Prob. 21.48APCh. 21 - An air rifle shoots a lead pellet by allowing high...Ch. 21 - Prob. 21.50APCh. 21 - A certain ideal gas has a molar specific heat of...Ch. 21 - Prob. 21.52APCh. 21 - Review. Oxygen at pressures much greater than 1...Ch. 21 - Prob. 21.54APCh. 21 - Model air as a diatomic ideal gas with M = 28.9...Ch. 21 - Review. As a sound wave passes through a gas, the...Ch. 21 - Prob. 21.57APCh. 21 - In a cylinder, a sample of an ideal gas with...Ch. 21 - As a 1.00-mol sample of a monatomic ideal gas...Ch. 21 - A sample consists of an amount n in moles of a...Ch. 21 - Prob. 21.61APCh. 21 - A vessel contains 1.00 104 oxygen molecules at...Ch. 21 - A pitcher throws a 0.142-kg baseball at 47.2 m/s....Ch. 21 - The latent heat of vaporization for water at room...Ch. 21 - A sample of a monatomic ideal gas occupies 5.00 L...Ch. 21 - Prob. 21.66APCh. 21 - Prob. 21.67APCh. 21 - Prob. 21.68APCh. 21 - Prob. 21.69APCh. 21 - On the PV diagram for an ideal gas, one isothermal...Ch. 21 - Prob. 21.71APCh. 21 - Review, (a) H it has enough kinetic energy, a...Ch. 21 - Prob. 21.73APCh. 21 - Prob. 21.74CPCh. 21 - A cylinder is closed at both ends and has...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax