EBK NUMERICAL METHODS FOR ENGINEERS
EBK NUMERICAL METHODS FOR ENGINEERS
7th Edition
ISBN: 8220100254147
Author: Chapra
Publisher: MCG
bartleby

Videos

Textbook Question
Book Icon
Chapter 24, Problem 53P

For fluid flow over a surface, the heat flux to the surface can be computed as

J = k d T d y

Where J = heat flux  ( W/m 2 ) , k = thermal conductivity  ( W/m K ) , T = temperature  ( K ) , and y = distance normal to the surface (m). The following measurements are made for air flowing over a flat plate that is 200 cm long and 50 cm wide:

y, cm 0 1 3 5
T, K 900 480 270 200

If k = 0.028 J/s m K , (a) determine the flux at the surface and (b) the heat transfer in watts. Note that 1J = s .

Blurred answer
Students have asked these similar questions
Thermal conductivity k is a measure of the ability of a material to conduct heat. For conduction heat transfer in the x-direction through a surface normal to the x-direction, Fourier’s law of heat conduction is expressed as: Q=-kA.dT/dx   where ?̇ is the rate of heat transfer and A is the area normal to the direction of heat transfer. Determine the primary dimensions of thermal conductivity (k). Look up a value of k and verify that its SI units are consistent with your result. Write a set of primary SI units for k.
Give True or False for the following: 1.In liquids and gases, heat transmission is caused by conduction and convection 2.The surface geometry is the important factor in convection heat transfer 3. The heat transfer by conduction from heated surface to the adjacent layer of fluid, 4. The heat transfer is increased in the fin when &> 1 5.The unit of the thermal diffusivity is m²/s 6. Temperature change between the materials interfaces is attributed to the thermal contact resistance 7. A material that has a low heat capacity will have a large thermal diffusivity. 8. Heat conduction flowing from one side to other depends directly on thickness 9.Fin efficiency is the ratio of the fin heat dissipation with that of no fin 10.The critical radius is represented the ratio of the convicted heat transfer to the thermal conductivity
The following table lists temperatures and specific volumes of water vapor at two pressures: p = 1.5 MPa v(m³/kg) p = 1.0 MPa T ("C) v(m³/kg) T ("C) 200 0.2060 200 0.1325 240 280 0.2275 0.2480 240 280 0.1483 0.1627 Data encountered in solving problems often do not fall exactly on the grid of values provided by property tables, and linear interpolation between adjacent table entries becomes necessary. Using the data provided here, estimate i. the specific volume at T= 240 °Č, p = 1.25 MPa, in m/kg ii. the temperature at p = 1.5 MPa, v = 0.1555 m/kg, in °C ii. the specific volume at T = 220 °C, p = 1.4 MPa, in m'/kg

Chapter 24 Solutions

EBK NUMERICAL METHODS FOR ENGINEERS

Ch. 24 - One of your colleagues has designed a new...Ch. 24 - Video an giography is used to measure blood flow...Ch. 24 - 24.14 Perform the same computation as in Sec....Ch. 24 - Perform the same computation as in Sec. 24.2, but...Ch. 24 - 24.16 As in Sec. 24.2, compute F using the...Ch. 24 - Stream cross-sectional areas (A) are required for...Ch. 24 - 24.18 As described in Prob. 24.17, the...Ch. 24 - 24.21 A transportation engineering study requires...Ch. 24 - 24.22 A wind force distributed against the side of...Ch. 24 - 24.23 Water exerts pressure on the upstream ...Ch. 24 - 24.24 To estimate the size of a new dam, you have...Ch. 24 - The data listed in the following table gives...Ch. 24 - The heat flux q is the quantity of heat flowing...Ch. 24 - 24.27 The horizontal surface area of a lake at a...Ch. 24 - 24.28 Perform the same computation as in Sec....Ch. 24 - 24.29 Repeat Prob. 24.28, but use five...Ch. 24 - Repeat Prob. 24.28, but use Romberg integration to...Ch. 24 - Faradays law characterizes the voltage drop across...Ch. 24 - 24.32 Based on Faraday’s law (Prob. 24.31), use...Ch. 24 - Suppose that the current through a resistor is...Ch. 24 - If a capacitor initially holds no charge, the...Ch. 24 - 24.35 Perform the same computation as in Sec....Ch. 24 - 24.36 Repeat Prob. 24.35, but use (a) Simpson’s ...Ch. 24 - 24.37 Compute work as described in Sec. 24.4, but...Ch. 24 - As was done in Sec. 24.4, determine the work...Ch. 24 - 24.39 The work done on an object is equal to the...Ch. 24 - The rate of cooling of a body (Fig. P24.40) can be...Ch. 24 - 24.41 A rod subject to an axial load (Fig....Ch. 24 - If the velocity distribution of a fluid flowing...Ch. 24 - 24.43 Using the following data, calculate the work...Ch. 24 - 24.44 A jet fighter’s position on an aircraft...Ch. 24 - 24.45 Employ the multiple-application Simpson’s...Ch. 24 - The upward velocity of a rocket can be computed by...Ch. 24 - Referring to the data from Problem 20.61, find the...Ch. 24 - Fully developed flow moving through a 40-cm...Ch. 24 - Fully developed flow of a Bingham plasticfluid...Ch. 24 - 24.50 The enthalpy of a real gas is a ...Ch. 24 - Given the data below, find the isothermal work...Ch. 24 - 24.52 The Rosin-Rammler-Bennet (RRB) equation is...Ch. 24 - For fluid flow over a surface, the heat flux to...Ch. 24 - The pressure gradient for laminar flow through a...Ch. 24 - 24.55 Velocity data for air are collected at...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Chain Rule dy:dx = dy:du*du:dx; Author: Robert Cappetta;https://www.youtube.com/watch?v=IUYniALwbHs;License: Standard YouTube License, CC-BY
CHAIN RULE Part 1; Author: Btech Maths Hub;https://www.youtube.com/watch?v=TIAw6AJ_5Po;License: Standard YouTube License, CC-BY