Physics for Scientists and Engineers: Foundations and Connections
Physics for Scientists and Engineers: Foundations and Connections
15th Edition
ISBN: 9781305289963
Author: Debora M. Katz
Publisher: Cengage Custom Learning
bartleby

Videos

Textbook Question
Book Icon
Chapter 27, Problem 4PQ

The first Leyden jar was probably discovered by a German clerk named E. Georg von Kleist. Because von Kleist was not a scientist and did not keep good records, the credit for the discovery of the Leyden jar usually goes to physicist Pieter Musschenbroek from Leyden, Holland. Musschenbroek accidentally discovered the Leyden jar when he tried to charge a jar of water and shocked himself by touching the wire on the inside of the jar while holding the jar on the outside. He said that the shock was no ordinary shock and his body shook violently as though he had been hit by lightning. The energy from the jar that passed through his body was probably around 1 J, and his jar probably had a capacitance of about 1 nF.

  1. a. Estimate the charge that passed through Musschenbroek’s body.
  2. b. What was the potential difference between the inside and outside of the Leyden jar before Musschenbroek discharged it?
Blurred answer
Students have asked these similar questions
A common laboratory device for building up high voltages is the Van de Graaff generator. Which of following statements about Van de Graaff generators is not correct?   A. The voltage of a Van de Graaff generator can only be increased by increasing the radius of the sphere. B. The voltage of a Van de Graaff generator can be increased by increasing the radius of the sphere or by placing the entire system in a container filled with high-pressure gas. C. In a Van de Graaff generator, a moving rubber belt carries electrons from the voltage source to a conducting sphere. D. All the above statements are correct. E. None of the above statements is correct.
A Geiger-Mueller tube is a radiation detector that consists of a closed, hollow, metal cylinder (the cathode) of inner radius ra and a coaxial cylindrical wire (the anode) of radius rb (see figure below) with a gas filling the space between the electrodes. Assume that the internal diameter of a Geiger-Mueller tube is 3.40 cm and that the wire along the axis has a diameter of 0.205 mm. The dielectric strength of the gas between the central wire and the cylinder is 1.30 106 V/m. Use the equation 2?rℓE =  qin ?0 to calculate the maximum potential difference that can be applied between the wire and the cylinder before breakdown occurs in the gas.
A Geiger-Mueller tube is a radiation detector that consists of a closed, hollow, metal cylinder (the cathode) of inner radius ra and a coaxial cylindrical wire (the anode) of radius rb (see figure below) with a gas filling the space between the electrodes. Assume that the internal diameter of a Geiger-Mueller tube is 1.95 cm and that the wire along the axis has a diameter of 0.210 mm. The dielectric strength of the gas between the central wire and the cylinder is 1.30  106 V/m. Use the equation 2?rℓE =qin/?0 to calculate the maximum potential difference that can be applied between the wire and the cylinder before breakdown occurs in the gas. [Image] A cross-section of a Geiger-Mueller tube shows an inner anode of radius rb and charge density ? and an outer cathode of radius ra and charge density −?.

Chapter 27 Solutions

Physics for Scientists and Engineers: Foundations and Connections

Ch. 27 - The first Leyden jar was probably discovered by a...Ch. 27 - Prob. 5PQCh. 27 - According to UE=12C(V)2 (Eq. 27.3), a greater...Ch. 27 - In Figure P27.7, capacitor 1 (C1 = 20.0 F)...Ch. 27 - Prob. 8PQCh. 27 - A 4.50-F capacitor is connected to a battery for a...Ch. 27 - Prob. 10PQCh. 27 - Prob. 11PQCh. 27 - Prob. 12PQCh. 27 - Prob. 13PQCh. 27 - When a Leyden jar is charged by a hand generator...Ch. 27 - Prob. 15PQCh. 27 - A 6.50-F capacitor is connected to a battery. What...Ch. 27 - A pair of capacitors with capacitances CA = 3.70 F...Ch. 27 - Two 1.5-V batteries are required in a flashlight....Ch. 27 - Two capacitors have capacitances of 6.0 F and 3.0...Ch. 27 - Prob. 20PQCh. 27 - Calculate the equivalent capacitance between...Ch. 27 - Prob. 22PQCh. 27 - Given the arrangement of capacitors in Figure...Ch. 27 - An arrangement of capacitors is shown in Figure...Ch. 27 - Prob. 25PQCh. 27 - Prob. 26PQCh. 27 - Find the equivalent capacitance for the network...Ch. 27 - Prob. 28PQCh. 27 - The capacitances of three capacitors are in the...Ch. 27 - For the four capacitors in the circuit shown in...Ch. 27 - The separation between the 4.40-cm2 plates of an...Ch. 27 - A spherical capacitor is made up of two concentric...Ch. 27 - A Derive an expression for the capacitance of an...Ch. 27 - Prob. 34PQCh. 27 - Prob. 35PQCh. 27 - Prob. 36PQCh. 27 - Prob. 37PQCh. 27 - Prob. 38PQCh. 27 - Review One of the plates of a parallel-plate...Ch. 27 - Prob. 40PQCh. 27 - Prob. 41PQCh. 27 - A 56.90-pF cylindrical capacitor carries a charge...Ch. 27 - Prob. 43PQCh. 27 - Prob. 44PQCh. 27 - Prob. 45PQCh. 27 - Prob. 46PQCh. 27 - The plates of an air-filled parallel-plate...Ch. 27 - Prob. 48PQCh. 27 - Prob. 49PQCh. 27 - Prob. 50PQCh. 27 - Prob. 51PQCh. 27 - Prob. 52PQCh. 27 - Prob. 53PQCh. 27 - A parallel-plate capacitor with an air gap has...Ch. 27 - A parallel-plate capacitor with plates of area A =...Ch. 27 - Prob. 56PQCh. 27 - Prob. 57PQCh. 27 - Prob. 58PQCh. 27 - Prob. 59PQCh. 27 - Prob. 60PQCh. 27 - Find an expression for the electric field between...Ch. 27 - An air-filled parallel-plate capacitor is charged...Ch. 27 - Two Leyden jars are similar in size and shape, but...Ch. 27 - Prob. 64PQCh. 27 - Nerve cells in the human body and in other animals...Ch. 27 - Prob. 66PQCh. 27 - Prob. 67PQCh. 27 - Prob. 68PQCh. 27 - Prob. 69PQCh. 27 - Prob. 70PQCh. 27 - What is the maximum charge that can be stored on...Ch. 27 - Prob. 72PQCh. 27 - In a laboratory, you find a 9.00-V battery and a...Ch. 27 - Prob. 74PQCh. 27 - Figure P27.75 shows four capacitors with CA = 4.00...Ch. 27 - Prob. 76PQCh. 27 - Prob. 77PQCh. 27 - A parallel-plate capacitor with plates of area A...Ch. 27 - Prob. 79PQCh. 27 - Prob. 80PQCh. 27 - A 90.0-V battery is connected to a capacitor with...Ch. 27 - Consider an infinitely long network with identical...Ch. 27 - Prob. 83PQCh. 27 - What is the equivalent capacitance of the five...Ch. 27 - The circuit in Figure P27.85 shows four capacitors...Ch. 27 - Prob. 86PQCh. 27 - A Pairs of parallel wires or coaxial cables are...Ch. 27 - A parallel-plate capacitor has square plates of...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
8.02x - Lect 1 - Electric Charges and Forces - Coulomb's Law - Polarization; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=x1-SibwIPM4;License: Standard YouTube License, CC-BY