University Physics with Modern Physics (14th Edition)

14th Edition

ISBN: 9780321973610

Author: Hugh D. Young, Roger A. Freedman

Publisher: PEARSON

*expand_more*

*expand_more*

*format_list_bulleted*

#### Concept explainers

Textbook Question

Chapter 29, Problem 29.18E

The current in **Fig. E29.18** obeys the equation *I*(*t*) = *I*_{0}*e*^{−bt}, where *b* > 0. Find the direction (clockwise or counterclockwise) of the current induced in the round coil lor *t* > 0.

Figure **E29.18**

Expert Solution & Answer

Learn your wayIncludes step-by-step video

*schedule*01:55

Students have asked these similar questions

A 244 -turn circular coil has
radius of r = 7 [cm] and a resistance of R = 9
[Q]. The coil is sitting in a uniform magnetic
field that is perpendicular to the plane of the
coil. The magnitude of the magnetic field
changes to pr duce an induced current of
0.53 [A] in the coil.
What is the magnitude of the
a.
induced emf?
|emf] =
[V]
What is the magnitude of the
b.
rate of change of the magnetic field?
|dB/dt =
[T/s]

29.31 A 0.360-m-long metal bar is pulled to the left by an applied force F. The bar rides on parallel metal rails connected through a 45.0-Ohm resistor, as shown in Fig. E29.31, so the apparatus makes a complete circuit. You can ignore the resistance of the bar and rails. The circuit is in a uniform 0.650-T magnetic field that is directed out of the plane of the figure. At the instant when the bar is moving to the left at 5.90 m/s,
(a) is the induced current in the circuit clockwise or counterclockwise?
(b) What is the rate at which the applied force is doing work on the bar?

A 40 tum circular coil (radius = 4.0 cm, total resistance = 0.20 0) is placed in a uniform magnetic field directed
perpendicular to the plane of the coil. The magnitude of the magnetic field varies with time as given by B = 39
sin(10 Ttt) mT where t is measured in s. What is the magnitude of the induced current in the coil at 0.07 s?
%3D
O a. 1.25 A
O b. 0.61 A
Oc 0.72 A
O d. 0.99 A
O e. 0 A

# Chapter 29 Solutions

University Physics with Modern Physics (14th Edition)

Ch. 29.2 - The accompanying figure shows a wire coil being...Ch. 29.3 - (a) Suppose the magnet in Fig. 29.14a were...Ch. 29.4 - The earths magnetic field points toward (magnetic)...Ch. 29.5 - If you wiggle a magnet back and forth in your...Ch. 29.6 - Prob. 29.6TYUCh. 29.7 - Prob. 29.7TYUCh. 29 - A sheet of copper is placed between the poles of...Ch. 29 - Prob. 29.2DQCh. 29 - Prob. 29.3DQCh. 29 - Prob. 29.4DQ

Ch. 29 - A long, straight conductor passes through the...Ch. 29 - A student asserted that if a permanent magnet is...Ch. 29 - An airplane is in level flight over Antarctica,...Ch. 29 - Consider the situation in Exercise 29.21. In part...Ch. 29 - Prob. 29.9DQCh. 29 - Prob. 29.10DQCh. 29 - Example 29.6 discusses the external force that...Ch. 29 - In the situation shown in Fig. 29.18, would it be...Ch. 29 - Prob. 29.13DQCh. 29 - Small one-cylinder gasoline engines sometimes use...Ch. 29 - Does Lenzs law say that the induced current in a...Ch. 29 - Does Faradays law say that a large magnetic flux...Ch. 29 - Can one have a displacement current as well as a...Ch. 29 - Prob. 29.18DQCh. 29 - Match the mathematical statements of Maxwells...Ch. 29 - If magnetic monopoles existed, the right-hand side...Ch. 29 - Prob. 29.21DQCh. 29 - A single loop of wire with an area of 0.0900 m2 is...Ch. 29 - In a physics laboratory experiment, a coil with...Ch. 29 - Search Coils and Credit Cards. One practical way...Ch. 29 - A closely wound search coil (see Exercise 29.3)...Ch. 29 - A circular loop of wire with a radius of 12.0 cm...Ch. 29 - CALC A coil 4.00 cm in radius, containing 500...Ch. 29 - Prob. 29.7ECh. 29 - CALC A flat, circular, steel loop of radius 75 cm...Ch. 29 - Shrinking Loop. A circular loop of flexible iron...Ch. 29 - A closely wound rectangular coil of 80 turns has...Ch. 29 - CALC In a region of space, a magnetic field points...Ch. 29 - In many magnetic resonance imaging (MRI) systems,...Ch. 29 - The armature of a small generator consists of a...Ch. 29 - A flat, rectangular coil of dimensions l and w is...Ch. 29 - A circular loop of wire is in a region of...Ch. 29 - The current I in a long, straight wire is constant...Ch. 29 - Two closed loops A and C are close to a long wire...Ch. 29 - The current in Fig. E29.18 obeys the equation I(t)...Ch. 29 - Prob. 29.19ECh. 29 - A cardboard tube is wrapped with two windings of...Ch. 29 - A small, circular ring is inside a larger loop...Ch. 29 - A circular loop of wire with radius r = 0.0480 m...Ch. 29 - CALC A circular loop of wire with radius r =...Ch. 29 - A rectangular loop of wire with dimensions 1.50 cm...Ch. 29 - In Fig. E29.25 a conducting rod of length L = 30.0...Ch. 29 - A rectangle measuring 30.0 cm by 40.0 cm is...Ch. 29 - Are Motional emfs a Practical Source of...Ch. 29 - Motional emfs in Transportation. Airplanes and...Ch. 29 - The conducting rod ab shown in Fig. E29.29 makes...Ch. 29 - A 0.650-m-long metal bar is pulled to the right at...Ch. 29 - A 0.360-m-long metal bar is pulled to the left by...Ch. 29 - Prob. 29.32ECh. 29 - A 0.250-m-long bar moves on parallel rails that...Ch. 29 - Prob. 29.34ECh. 29 - Prob. 29.35ECh. 29 - A metal ring 4.50 cm in diameter is placed between...Ch. 29 - Prob. 29.37ECh. 29 - Prob. 29.38ECh. 29 - A long, thin solenoid has 400 turns per meter and...Ch. 29 - Prob. 29.40ECh. 29 - A long, straight solenoid with a cross-sectional...Ch. 29 - Prob. 29.42ECh. 29 - Prob. 29.43ECh. 29 - CALC In Fig. 29.23 the capacitor plates have area...Ch. 29 - Prob. 29.45ECh. 29 - A very long, rectangular loop of wire can slide...Ch. 29 - CP CALC In the circuit shown in Fig. P29.47, the...Ch. 29 - Prob. 29.48PCh. 29 - CALC A very long, straight solenoid with a...Ch. 29 - Prob. 29.50PCh. 29 - In Fig. P29.51 the loop is being pulled lo the...Ch. 29 - Make a Generator? You are shipwrecked on a...Ch. 29 - A flexible circular loop 6.50 cm in diameter lies...Ch. 29 - CALC A conducting rod with length L = 0.200 m,...Ch. 29 - Prob. 29.55PCh. 29 - CP CALC Terminal Speed. A bar of length L = 0.36 m...Ch. 29 - CALC The long, straight wire shown in Fig. P29.57a...Ch. 29 - CALC A circular conducting ring with radius r0 =...Ch. 29 - CALC A slender rod, 0.240 m long, rotates with an...Ch. 29 - A 25.0-cm-long metal rod lies in the .xy-plane and...Ch. 29 - CP CALC A rectangular loop with width L and a...Ch. 29 - CALC An airplane propeller of total length L...Ch. 29 - The magnetic field B, at all points within a...Ch. 29 - CP CALC A capacitor has two parallel plates with...Ch. 29 - Prob. 29.65PCh. 29 - Prob. 29.66PCh. 29 - DATA You are conducting an experiment in which a...Ch. 29 - DATA You measure the magnitude of the external...Ch. 29 - A metal bar with length L, mass m, and resistance...Ch. 29 - CP CALC A square, conducting, wire loop of side L,...Ch. 29 - BIO STIMULATING THE BRAIN. Communication in the...Ch. 29 - BIO STIMULATING THE BRAIN. Communication in the...Ch. 29 - It may be desirable to increase the maximum...Ch. 29 - Which graph in Fig. P29.74 best represents the...

# Additional Science Textbook Solutions

Find more solutions based on key concepts

Explain all answers clearly, using complete sentence and proper essay structure if needed. An asterisk (*) desi...

Cosmic Perspective Fundamentals

the ratio of the number of turns in primary coil to the number of turns in the secondary coil of the transforme...

Glencoe Physical Science 2012 Student Edition (Glencoe Science) (McGraw-Hill Education)

If a marathon runner averages 9.5 mi/h, how long does it take him or her to run a 26.22-mi marathon?

College Physics

The new efficiency of the engine is greater than, less than or equal to 0.470 .

Physics (5th Edition)

When a 3.0-kg block is pushed against a massless spring of force constant constant 4.5103N/m , the spring is co...

University Physics Volume 1

A balloon may easily be charged to several thousand volts. Does that mean it has several thousand joules of ene...

Conceptual Integrated Science

Knowledge Booster

Learn more about

Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions

- A 500-turn coil with a 0.250m2 area is spun in Earth’s 5.00105T magnetic field, producing a 12.0-kV maximum emf. (a) As what angular velocity must the coil be spun? (b) What is unreasonable about this result? (c) Which assumption or premise is responsible?
*arrow_forward*A flat, square coil of 20 turns that has sides of length 15.0 cm is rotating in a magnetic field of strength 0.050 T. If tlie maximum emf produced in die coil is 30.0 mV, what is the angular velocity of the coil?*arrow_forward*Two frictionless conducting rails separated by l = 55.0 cm are connected through a 2.00- resistor, and the circuit is completed by a bar that is free to slide on the rails (Fig. P32.71). A uniform magnetic field of 5.00 T directed out of the page permeates the region, a. What is the magnitude of the force Fp that must be applied so that the bar moves with a constant speed of 1.25 m/s to the right? b. What is the rate at which energy is dissipated through the 2.00- resistor in the circuit?*arrow_forward* - A constant magnetic field of 0.275 T points through a circular loop of wire with radius 3.50 cm as shown in Figure P32.1. a. What is the magnetic flux through the loop? b. Is a current induced in the loop? Explain. FIGURE P32.1
*arrow_forward*Design a current loop that, when rotated in a uniform magnetic field of strength 0.10 T, will produce an emf =0 sin t. where 0=110V and 0=110V .*arrow_forward*A square loop whose sides are 6.0-cm long is made with copper wire of radius 1.0 mm. If a magnetic field perpendicular to the loop is changing at a rate of 5.0 mT/s, what is the current in the loop?*arrow_forward* - A solenoid with 4 x 107turns/m has an iron core placed in it whose magnetic susceptibility is 4.0 x 103. (a) If a cent of 2.0 A flows through the solenoid, what is the magnetic field in the iron core? (b) What is the effective surface current formed by the aligned atomic current loops in the iron core? (c) What is the self-inductance of the filled solenoid?
*arrow_forward*(a) A nonferrous screwdriver is being used in a 2.00 T magnetic field. What maximum emf can be induced along its 12.0 cm length when it moves at 6.00 m/s? (b) Is it likely that this emf will have any consequences or even be noticed?*arrow_forward*The bar in Figure OQ23.10 moves on rails to the right with a velocity v, and a uniform, constant magnetic field is directed out of the page. Which of the following statements are correct? More than one statement may be correct. (a) The induced current in the loop is zero. (b) The induced current in the loop is clockwise. (c) The induced current in the loop is counterclockwise. (d) An external force is required to keep the bar moving at constant speed. (e) No force is required to keep the bar moving at constant speed.*arrow_forward* - A rectangular coil with resistance R has N turns, each of length and width as shown in Figure P31.36. The coil moves into a uniform magnetic field B with constant velocity v. What are the magnitude and direction of the total magnetic force on the coil (a) as it enters the magnetic field, (b) as it moves within the field, and (c) as it leaves the field?
*arrow_forward*A uniform magnetic field B=5.44104iT passes through a closed surface with a slanted top as shown in Figure P31.59. a. Given the dimensions and orientation of the closed surface shown, what is the magnetic flux through the slanted top of the surface? b. What is the net magnetic flux through the entire closed surface?*arrow_forward*A cube of edge length l=2.50 cm is positioned as shown in Figure P30.47. A uniform magnetic field given by B = (5 i + 4j + 3k) T exists throughout the region. (a) Calculate the magnetic flux through the shaded face. (b) What is the total flux through the six faces?*arrow_forward*

*arrow_back_ios*

SEE MORE QUESTIONS

*arrow_forward_ios*

Recommended textbooks for you

- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...

Physics

ISBN:9781133939146

Author:Katz, Debora M.

Publisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...

Physics

ISBN:9780078807213

Author:Paul W. Zitzewitz

Publisher:Glencoe/McGraw-Hill

Physics for Scientists and Engineers with Modern ...

Physics

ISBN:9781337553292

Author:Raymond A. Serway, John W. Jewett

Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...

Physics

ISBN:9781305116399

Author:Raymond A. Serway, John W. Jewett

Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text

Physics

ISBN:9781133104261

Author:Raymond A. Serway, John W. Jewett

Publisher:Cengage Learning

College Physics

Physics

ISBN:9781285737027

Author:Raymond A. Serway, Chris Vuille

Publisher:Cengage Learning

Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY