bartleby
search
close search
Hit Return to see all results
close solutoin list

Chapter 3, Problem 3.103QP

FindFindarrow_forward

CHEMISTRY: ATOMS FIRST VOL 1 W/CON...

14th Edition
Burdge
ISBN: 9781259327933

Solutions

Chapter
Section
FindFindarrow_forward

CHEMISTRY: ATOMS FIRST VOL 1 W/CON...

14th Edition
Burdge
ISBN: 9781259327933

(a)

Interpretation Introduction

Interpretation:

The number of unpaired electrons in the given atoms with its diamagnetic or paramagnetic behaviour should be given by knowing their ground-state electron configurations.

Concept Introduction:

An orbital is an area of space in which electrons are orderly filled.  The maximum capacity in any type of orbital is two electrons.  An atomic orbital is defined as the region of space in which the probability of finding the electrons is highest.  It is subdivided into four orbitals such as s, p, d and f orbitals which depend upon the number of electrons present in the nucleus of a particular atom.

There are three basic principles in which orbitals are filled by the electrons.

  1. 1. Aufbau principle: In German, the word 'aufbau' means 'building up'.  The electrons are arranged in various orbitals in the order of increasing energies.
  2. 2. Pauli exclusion principle: An electron does not have all the four quantum numbers.
  3. 3. Hund’s rule: Each orbital is singly engaged with one electron having the maximum same spin capacity after that only pairing occurs.

The electron configuration is the allocation of electrons of an atom in atomic orbitals.  Electronic configuration of a particular atom is written by following the three basic principles.  If all the atomic orbitals are filled by electrons, then the atom is diamagnetic in nature.  Diamagnetic atoms are repelled by the magnetic field.  If one or more unpaired electrons are present in an atom, then that atom is paramagnetic in nature.  Paramagnetic atoms are attracted to the magnetic field.

To find: Count the number of unpaired electrons in Rb and get its magnetic behavior

(b)

Interpretation Introduction

Interpretation:

The number of unpaired electrons in the given atoms with its diamagnetic or paramagnetic behaviour should be given by knowing their ground-state electron configurations.

Concept Introduction:

An orbital is an area of space in which electrons are orderly filled.  The maximum capacity in any type of orbital is two electrons.  An atomic orbital is defined as the region of space in which the probability of finding the electrons is highest.  It is subdivided into four orbitals such as s, p, d and f orbitals which depend upon the number of electrons present in the nucleus of a particular atom.

There are three basic principles in which orbitals are filled by the electrons.

  1. 1. Aufbau principle: In German, the word 'aufbau' means 'building up'.  The electrons are arranged in various orbitals in the order of increasing energies.
  2. 2. Pauli exclusion principle: An electron does not have all the four quantum numbers.
  3. 3. Hund’s rule: Each orbital is singly engaged with one electron having the maximum same spin capacity after that only pairing occurs.

The electron configuration is the allocation of electrons of an atom in atomic orbitals.  Electronic configuration of a particular atom is written by following the three basic principles.  If all the atomic orbitals are filled by electrons, then the atom is diamagnetic in nature.  Diamagnetic atoms are repelled by the magnetic field.  If one or more unpaired electrons are present in an atom, then that atom is paramagnetic in nature.  Paramagnetic atoms are attracted to the magnetic field.

To find: Count the number of unpaired electrons in As and get its magnetic behavior

(c)

Interpretation Introduction

Interpretation:

The number of unpaired electrons in the given atoms with its diamagnetic or paramagnetic behaviour should be given by knowing their ground-state electron configurations.

Concept Introduction:

An orbital is an area of space in which electrons are orderly filled.  The maximum capacity in any type of orbital is two electrons.  An atomic orbital is defined as the region of space in which the probability of finding the electrons is highest.  It is subdivided into four orbitals such as s, p, d and f orbitals which depend upon the number of electrons present in the nucleus of a particular atom.

There are three basic principles in which orbitals are filled by the electrons.

  1. 1. Aufbau principle: In German, the word 'aufbau' means 'building up'.  The electrons are arranged in various orbitals in the order of increasing energies.
  2. 2. Pauli exclusion principle: An electron does not have all the four quantum numbers.
  3. 3. Hund’s rule: Each orbital is singly engaged with one electron having the maximum same spin capacity after that only pairing occurs.

The electron configuration is the allocation of electrons of an atom in atomic orbitals.  Electronic configuration of a particular atom is written by following the three basic principles.  If all the atomic orbitals are filled by electrons, then the atom is diamagnetic in nature.  Diamagnetic atoms are repelled by the magnetic field.  If one or more unpaired electrons are present in an atom, then that atom is paramagnetic in nature.  Paramagnetic atoms are attracted to the magnetic field.

To find: Count the number of unpaired electrons in I and get its magnetic behaviour

(d)

Interpretation Introduction

Interpretation:

The number of unpaired electrons in the given atoms with its diamagnetic or paramagnetic behaviour should be given by knowing their ground-state electron configurations.

Concept Introduction:

An orbital is an area of space in which electrons are orderly filled.  The maximum capacity in any type of orbital is two electrons.  An atomic orbital is defined as the region of space in which the probability of finding the electrons is highest.  It is subdivided into four orbitals such as s, p, d and f orbitals which depend upon the number of electrons present in the nucleus of a particular atom.

There are three basic principles in which orbitals are filled by the electrons.

  1. 1. Aufbau principle: In German, the word 'aufbau' means 'building up'.  The electrons are arranged in various orbitals in the order of increasing energies.
  2. 2. Pauli exclusion principle: An electron does not have all the four quantum numbers.
  3. 3. Hund’s rule: Each orbital is singly engaged with one electron having the maximum same spin capacity after that only pairing occurs.

The electron configuration is the allocation of electrons of an atom in atomic orbitals.  Electronic configuration of a particular atom is written by following the three basic principles.  If all the atomic orbitals are filled by electrons, then the atom is diamagnetic in nature.  Diamagnetic atoms are repelled by the magnetic field.  If one or more unpaired electrons are present in an atom, then that atom is paramagnetic in nature.  Paramagnetic atoms are attracted to the magnetic field.

To find: Count the number of unpaired electrons in Cr and get its magnetic behavior

(e)

Interpretation Introduction

Interpretation:

The number of unpaired electrons in the given atoms with its diamagnetic or paramagnetic behaviour should be given by knowing their ground-state electron configurations.

Concept Introduction:

An orbital is an area of space in which electrons are orderly filled.  The maximum capacity in any type of orbital is two electrons.  An atomic orbital is defined as the region of space in which the probability of finding the electrons is highest.  It is subdivided into four orbitals such as s, p, d and f orbitals which depend upon the number of electrons present in the nucleus of a particular atom.

There are three basic principles in which orbitals are filled by the electrons.

  1. 1. Aufbau principle: In German, the word 'aufbau' means 'building up'.  The electrons are arranged in various orbitals in the order of increasing energies.
  2. 2. Pauli exclusion principle: An electron does not have all the four quantum numbers.
  3. 3. Hund’s rule: Each orbital is singly engaged with one electron having the maximum same spin capacity after that only pairing occurs.

The electron configuration is the allocation of electrons of an atom in atomic orbitals.  Electronic configuration of a particular atom is written by following the three basic principles.  If all the atomic orbitals are filled by electrons, then the atom is diamagnetic in nature.  Diamagnetic atoms are repelled by the magnetic field.  If one or more unpaired electrons are present in an atom, then that atom is paramagnetic in nature.  Paramagnetic atoms are attracted to the magnetic field.

To find: Count the number of unpaired electrons in Zn and get its magnetic behavior

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Answers to Your Study Problems

Solve them all with bartleby. Boost your grades with guidance from subject experts covering thousands of textbooks. All for just $9.99/month

Get As ASAP