Essential University Physics (3rd Edition)
Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
bartleby

Concept explainers

Question
Book Icon
Chapter 35, Problem 20E
To determine

How big would h have to be if your minimum possible energy corresponded to a speed of 1.0m/s .

Blurred answer
Students have asked these similar questions
Imagine another universe in which the value of Planck’s constant is 0.0663 J . s, but in which the physical laws and all other physical constants are the same as in our universe. In this universe, two physics students are playing catch. They are 12 m apart, and one throws a 0.25 kg ball directly toward the other with a speed of 6.0 m/s. (a) What is the uncertainty in the ball’s horizontal momentum, in a direction perpendicular to that in which it is being thrown, if the student throwing the ball knows that it is located within a cube with volume 125 cm3 at the time she throws it? (b) By what horizontal distance could the ball miss the second student?
Imagine an alternate universe where the value of the Planck constant is 6.62607x10−17J·s. In that universe, which of the following objects would require quantum mechanics to describe, that is, would show both particle and wave properties? Which objects would act like everyday objects, and be adequately described by classical mechanics? A bacterium with a mass of 9.0 pg, 6.0 µm long, moving at 9.00 µm/s. A mosquito with a mass of 2.3 mg, 6.0 mm long, moving at 3.0 m/s. A paper airplane with a mass of 5.9 g, 295. mm long, moving at 3.7 m/s. A car with a mass of 2000. kg, 4.4 m long, moving at 81.0 km/h.
Imagine an alternate universe where the value of the Planck constant is 6.62607x10−4J·s. In that universe, which of the following objects would require quantum mechanics to describe, that is, would show both particle and wave properties? Which objects would act like everyday objects, and be adequately described by classical mechanics? A grain of sand with a mass of 135 mg, 515. µm wide, moving at 4.00 mm/s. An airplane with a mass of 1.75 x 104 kg, 15.0 m long, moving at 2300. km/h. An atom with a mass of 1.0 x 10-27 kg, 137. pm wide, moving at 394. m/s. A ball with a mass of 215. g, 4.1 cm wide, moving at 35.0 m/s.
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
  • Text book image
    University Physics Volume 3
    Physics
    ISBN:9781938168185
    Author:William Moebs, Jeff Sanny
    Publisher:OpenStax
    Text book image
    Modern Physics
    Physics
    ISBN:9781111794378
    Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
    Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning