Essential University Physics
Essential University Physics
4th Edition
ISBN: 9780134988566
Author: Wolfson, Richard
Publisher: Pearson Education,
Question
Book Icon
Chapter 37, Problem 40P

(a)

To determine

The classical vibrational frequency of the oxygen molecule.

(b)

To determine

The rotational inertia of the molecule.

Blurred answer
Students have asked these similar questions
For a certain diatomic molecule, the lowest-energy photon in the vibrational spectrum is 0.17 eV.What is the energy of a photon emitted in a transition from the 5th exited vibrational energy level to the 2nd  exited vibrational energy level, assuming no change in the rotational energy?
Consider a CO molecule that is initially in the ground state of n = 0, l = 0. If the energy of a vibrational transition from the n = 0 state to the n = 1 state in CO could instead be absorbed in a rotational transition, what would be the value of l for the final state?
To determine the equilibrium separation of the atoms in the HCl molecule, you measure the rotational spectrum of HCl. You find that the spectrum contains these wavelengths (among others): 60.4 mm, 69.0 mm, 80.4 mm, 96.4 mm, and 120.4 mm. (a) Use your measured wavelengths to find the moment of inertia of the HCl molecule about an axis through the center of mass and perpendicular to the line joining the two nuclei. (b) The value of l changes by +-1 in rotational transitions. What value of l for the upper level of the transition gives rise to each of these wavelengths? (c) Use your result of part (a) to calculate the equilibrium separation of the atoms in the HCl molecule. The mass of a chlorine atom is 5.81 * 10-26 kg, and the mass of a hydrogen atom is 1.67 * 10-27 kg. (d) What is the longest-wavelength line in the rotational spectrum of HCl?

Chapter 37 Solutions

Essential University Physics

Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning