Essential University Physics
Essential University Physics
4th Edition
ISBN: 9780134988566
Author: Wolfson, Richard
Publisher: Pearson Education,
bartleby

Videos

Textbook Question
Book Icon
Chapter 37, Problem 56P

The transition from the ground state to the first rotational excited state in diatomic oxygen (O2) requires 356 μeV. At what temperature would the thermal energy kT be sufficient to set diatomic oxygen into rotation? Would you ever find diatomic oxygen exhibiting the specific heat of a monatomic gas at normal pressure?

Blurred answer
Students have asked these similar questions
The vibrational frequency n for Br2 is 323 cm-1 and the energy difference between its two lowest rotational energy levels, J = 0 and J = 1, is 0.164 cm-1. Calculate the relative populations of the v = 1 and v = 0 vibrational energylevels and the relative populations of the two lowest rotational energy levels for Br2 at 300 K. Comment on your results.
The CO molecule makes a transition from the J = 1 to the J = 2 rotational state when it absorbs a photon of frequency 2.30 x 1011 Hz. (a) Find the moment of inertia of this molecule from these data.
Although an ordinary H2 molecule consists of two identical atoms, this is not the case for the molecule HD, with one atom of deuterium (Le., heavy hydrogen, 2H). Because of its small moment of inertia, the HD molecule has a relatively large value of E: 0.0057 eV. At approximately what temperature would you expect the rotational heat capacity of a gas of HD molecules to "freeze out," that is, to fall significantly below the constant value predicted by the equipartition theorem?

Chapter 37 Solutions

Essential University Physics

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY