MECHANICS OF MATERIALS
MECHANICS OF MATERIALS
7th Edition
ISBN: 9781260471076
Author: BEER
Publisher: MCG
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 3.8, Problem 107P

(a)

To determine

Find the applied torque and the corresponding angle of twist at the onset of yield.

(a)

Expert Solution
Check Mark

Answer to Problem 107P

The applied torque at the onset of yield is 11.71kNm_.

The corresponding angle of twist at the onset of yield is 3.44°_.

Explanation of Solution

Given information:

The length of the shaft (L) is 0.9 m.

The shear stress (τY).is 180 MPa

The rigidity modulus of steel (G) is 77.2 GPa.

The inner diameter of the shaft (d1) is 30 mm.

The inner diameter of the shaft (d2) is 70 mm.

Calculation:

Find the inner radius (c1) of the shaft using the relation:

c1=12d1 (1)

Substitute 30 mm for d1 in Equation (1).

c1=12(30mm×1m1,000mm)=0.015m

Find the outer radius (c2) of the shaft using the relation:

c2=12d2 (2)

Substitute 70 mm for d2 in Equation (2)

c2=12(70mm×1m1,000mm)=0.035m

Find the polar moment of inertia of a shaft (J) using the relation:

J=π2(c24c14) (3)

Substitute 0.035 m for c2 and 0.015 m for c1 in Equation (3).

J=π2(0.03540.0154)=2.2777×106m4

At the onset of yield, the stress distribution is the elastic distribution with τmax=τY.

Find the applied torque (TY) in the shaft:

TY=JτYc2 (4)

Substitute 2.2777×106m4 for J, 180 MPa for τY, and 0.035 m for c2 in Equation (4).

TY=(2.2777×106m4)(180MPa×106N/m21MPa)(0.035m)=11,713.65Nm×1kN1,000N=11.71kNm

Therefore, the applied torque at the onset of yield is 11.71kNm_.

Find the angle of twist (ϕ) of the shaft:

ϕ=TLGJ (5)

Substitute 11.71×103Nm for T, 0.9 m for L, 77.2GPa for G, and 2.2777×106m4 for J in Equation (5).

ϕ=(11.71×103Nm)(0.9m)(77.2GPa×109N/m21GPa)(2.2777×106m4)=59.935×103rad×180°πrad=3.434°

Therefore, the corresponding angle of twist at the onset of yield is 3.44°_.

(b)

To determine

Find the applied torque and the corresponding angle of twist of the when the plastic zone is 10mm deep.

(b)

Expert Solution
Check Mark

Answer to Problem 107P

The applied torque when the plastic zone is 10 mm deep is 14.12kNm_.

The corresponding angle of twist when the plastic zone is 10 mm deep is 4.81°_.

Explanation of Solution

Given information:

The depth of plastic zone (t) is 10 mm.

Calculation:

Find the depth of elastic portion (ρY):

ρY=c2t (6)

Substitute 0.035 m for c2 and 10 mm for t in Equation (6)

ρY=0.035(10mm×1m1000mm)=0.0350.001=0.025m

Find the polar moment of inertia (J1) of elastic portion:

J1=π2(ρY4c14) (7)

Substitute 0.025 m for ρY and 0.015 m for c1 in Equation (7).

J1=π2(0.02540.0154)=534.07×109m4

Find the torque (T1) carried by elastic portion:

T1=J1τYρY (8)

Substitute 534.07×109m4 for J1, 180 MPa for τ1, and 0.025 m for ρY in Equation (8).

T1=(534.07×109m4)(180MPa×106N/m21MPa)(0.025m)=3.8453×103Nm

Find the expression of torque (T2) carried by plastic portion:

T2=2πρYc2τYρ2dp (9)

Integrate the Equation (9).

T2=2πτY[ρ33]ρYc2=23πτY[c23ρY3] (10)

Substitute 180 MPa for τY, 0.035 m for c2, and 0.025 m for ρY in Equation (10).

T2=23π(180MPa×106N/m21MPa)[(0.035m)3(0.025m)3]=10.273×103Nm

Find the total applied torque (T):

T=T1+T2 (11)

Substitute 3.8453×103Nm for T1 and 10.273×103N.m for T2 in Equation (11).

T=(3.8453×103)+(10.273×103)=14.1183×103Nm

Therefore, the applied torque when depth of plastic zone is 10 mm is 14.1183×103Nm_.

Find the angle of twist (φ) when the plastic zone is 10 mm

φ=τYLGρY (12)

Substitute 180 MPa for τY, 0.9 m for L, 77.2 GPa for G, and 0.025 m for ρY in Equation (12).

φ=(180MPa×106N/m21MPa)(0.9m)(77.2GPa×109N/m21GPa)(0.025m)=83.938×103rad×180°πrad=4.81°

Therefore, the corresponding angle of twist when plastic zone is 10 mm is 4.81°_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
An 18-mm-diameter solid circular shaft is made of a material that is assumed to be elastoplastic with τY = 145 MPa and G = 77.2 GPa. For a 1.2-m length of the shaft, determine the maximum shearing stress and the angle of twist caused by a 207-N·m torque.
A compound steel [G = 80 GPa] shaft consists of a solid 92-mm-diameter segment (1) and a solid 60-mm-diameter segment (2). The allowable shear stress of the steel is 96 MPa, and the maximum rotation angle at the free end of the compound shaft must be limited to φC ≤ 4°. Determine the magnitude of the largest torque TC that may be applied at C.
A cylindrical metal tube of mean radius r = 5 in., length L = 14 ft, and shear modulus G = 11 x 106 psi carries the torque T = 320 kip-in. Determine the smallest allowable constant wall thickness t if the shear stress is limited to 12 ksi and the angle of twist is not to exceed 2˚.

Chapter 3 Solutions

MECHANICS OF MATERIALS

Ch. 3.1 - Fig. P3.11 and P3.12 3.12 Knowing that an...Ch. 3.1 - Under normal operating conditions, the electric...Ch. 3.1 - In order to reduce the total mass of the assembly...Ch. 3.1 - The allowable shearing stress is 15 ksi in the...Ch. 3.1 - The allowable shearing stress is 15 ksi in the...Ch. 3.1 - The solid shaft shown is formed of a brass for...Ch. 3.1 - Solve Prob. 3.17 assuming that the direction of Tc...Ch. 3.1 - The solid rod AB has a diameter dAB= 60 mm and is...Ch. 3.1 - Fig. P3.19 and P3.20 3.20 The solid rod AB has a...Ch. 3.1 - A torque of magnitude T = 1000 N m is applied at D...Ch. 3.1 - Fig. P3.21 and P3.22 3.22 A torque of magnitude T...Ch. 3.1 - Under normal operating conditions a motor exerts a...Ch. 3.1 - Fig P3.23 and P3.24 3.24 Under normal operating...Ch. 3.1 - Prob. 25PCh. 3.1 - Fig. P3.25 and P3.26 3.26 The two solid shafts are...Ch. 3.1 - For the gear train shown, the diameters of the...Ch. 3.1 - Fig. P3.27 and P3.28 3.28 A torque T = 900 N m is...Ch. 3.1 - Fig. P3.29 3.29 While the exact distribution of...Ch. 3.1 - Fig. P3.30 3.30 (a) For a given allowable shearing...Ch. 3.3 - Determine the largest allowable diameter of a...Ch. 3.3 - The ship at A has just started to drill for oil on...Ch. 3.3 - (a) For the solid steel shaft shown, determine the...Ch. 3.3 - (a) For the aluminum pipe shown (G = 27 GPa),...Ch. 3.3 - The electric motor exerts a 500 N m-torque on the...Ch. 3.3 - The torques shown are exerted on pulleys and B....Ch. 3.3 - The aluminum rod BC (G = 26 GPa) is bonded to the...Ch. 3.3 - The aluminum rod AB (G = 27 GPa) is bonded to the...Ch. 3.3 - The solid spindle AB has a diameter ds = 1.75 in....Ch. 3.3 - Fig. p3.39 and p3.40 3.40 The solid spindle AB has...Ch. 3.3 - Two shafts, each of 78in. diameter, are connected...Ch. 3.3 - Two solid steel shafts each of 30-mm diameter, are...Ch. 3.3 - A coder F, used to record in digital form the...Ch. 3.3 - Fig. p3.43 3.44 For the gear train described in...Ch. 3.3 - The design specifications of a 1.2-m-long solid...Ch. 3.3 - 3.46 and 3.47 The solid cylindrical rod BC of...Ch. 3.3 - 3.46 and 3.47 The solid cylindrical rod BC of...Ch. 3.3 - The design of the gear-and-shaft system shown...Ch. 3.3 - The electric motor exerts a torque of 900 Nm on...Ch. 3.3 - A hole is punched at A in a plastic sheet by...Ch. 3.3 - The solid cylinders AB and BC are bonded together...Ch. 3.3 - Solve Prob. 3.51, assuming that cylinder AB is...Ch. 3.3 - The composite shaft shown consists of a...Ch. 3.3 - Fig. p3.53 and p3.54 3.54 The composite shaft...Ch. 3.3 - Two solid steel shafts (G = 77.2 GPa) are...Ch. 3.3 - Solve Prob. 3.55, assuming that the shaft AB is...Ch. 3.3 - 3.57 and 3.58 Two solid steel shafts are fitted...Ch. 3.3 - 3.57 and 3.58 Two solid steel shafts are fitted...Ch. 3.3 - The steel jacket CD has been attached to the...Ch. 3.3 - A torque T is applied as shown to a solid tapered...Ch. 3.3 - Prob. 61PCh. 3.3 - A solid shaft and a hollow shaft are made of the...Ch. 3.3 - An annular plate of thickness t and modulus G is...Ch. 3.5 - Determine the maximum shearing stress in a solid...Ch. 3.5 - Determine the maximum shearing stress in a solid...Ch. 3.5 - Using an allowable shearing stress of 4.5 ksi,...Ch. 3.5 - Using an allowable shearing stress of 50 MPa,...Ch. 3.5 - While a steel shaft of the cross section shown...Ch. 3.5 - Determine the required thickness of the 50-mm...Ch. 3.5 - A steel drive shaft is 6 ft long and its outer and...Ch. 3.5 - The hollow steel shaft shown (G = 77.2 GPa, all =...Ch. 3.5 - A steel pipe of 3.5-in. outer diameter is to be...Ch. 3.5 - 3.73 The design of a machine element calls for a...Ch. 3.5 - Three shafts and four gears are used to form a...Ch. 3.5 - Three shafts and four gears are used to form a...Ch. 3.5 - The two solid shafts and gears shown are used to...Ch. 3.5 - Fig. P3.76 and P3.77 3.77 The two solid shafts and...Ch. 3.5 - The shaft-disk-belt arrangement shown is used to...Ch. 3.5 - A 5-ft-long solid steel shaft of 0.875-in....Ch. 3.5 - A 2.5-m-long steel shaft of 30-mm diameter rotates...Ch. 3.5 - The design specifications of a 1.2-m-long solid...Ch. 3.5 - A 1.5-m-long tubular steel shaft (G = 77.2 GPa) of...Ch. 3.5 - Fig. P3.82 and P3.83 3.83 A 1.5-m-long tubular...Ch. 3.5 - The stepped shaft shown must transmit 40 kW at a...Ch. 3.5 - The stepped shaft shown rotates at 450 rpm....Ch. 3.5 - Knowing that the stepped shaft shown transmits a...Ch. 3.5 - The stepped shaft shown must rotate at a frequency...Ch. 3.5 - Fig. P3.87 and P3.88 3.88 The stepped shaft shown...Ch. 3.5 - A torque of magnitude T = 200 lbin. is applied to...Ch. 3.5 - Fig. P3.89, P3.90 and P3.91 3.90 In the stepped...Ch. 3.5 - In the stepped shaft shown, which has a full...Ch. 3.8 - The solid circular shaft shown is made of a steel...Ch. 3.8 - Prob. 93PCh. 3.8 - Prob. 94PCh. 3.8 - Prob. 95PCh. 3.8 - Fig. P3.95 and P3.96 3.96 The solid shaft shown is...Ch. 3.8 - It is observed that a straightened paper clip can...Ch. 3.8 - The solid shaft shown is made of a mild steel that...Ch. 3.8 - Prob. 99PCh. 3.8 - Prob. 100PCh. 3.8 - Prob. 101PCh. 3.8 - Prob. 102PCh. 3.8 - Prob. 103PCh. 3.8 - Prob. 104PCh. 3.8 - A solid circular rod is made of a material that is...Ch. 3.8 - Prob. 106PCh. 3.8 - Prob. 107PCh. 3.8 - Prob. 108PCh. 3.8 - Prob. 109PCh. 3.8 - Prob. 110PCh. 3.8 - Prob. 111PCh. 3.8 - A 50-mm diameter cylinder is made of a brass for...Ch. 3.8 - Prob. 113PCh. 3.8 - The solid circular drill rod AB is made of a steel...Ch. 3.8 - Prob. 115PCh. 3.8 - Prob. 116PCh. 3.8 - After the solid shaft of Prob. 3.116 has been...Ch. 3.8 - The hollow shaft shown is made of a steel that is...Ch. 3.8 - Prob. 119PCh. 3.8 - Prob. 120PCh. 3.10 - Determine the smallest allowable square cross...Ch. 3.10 - Prob. 122PCh. 3.10 - Using all = 70 MPa and G = 27 GPa, determine for...Ch. 3.10 - Prob. 124PCh. 3.10 - Determine the largest torque T that can be applied...Ch. 3.10 - Each of the two brass bars shown is subjected to a...Ch. 3.10 - Prob. 127PCh. 3.10 - Prob. 128PCh. 3.10 - Prob. 129PCh. 3.10 - Shafts A and B are made of the same material and...Ch. 3.10 - Prob. 131PCh. 3.10 - Shafts A and B are made of the same material and...Ch. 3.10 - Prob. 133PCh. 3.10 - Prob. 134PCh. 3.10 - Prob. 135PCh. 3.10 - A 36-kipin. torque is applied to a 10-ft-long...Ch. 3.10 - A 4-m-long steel member has a W310 60 cross...Ch. 3.10 - Prob. 138PCh. 3.10 - A 5-kipft torque is applied to a hollow aluminum...Ch. 3.10 - A torque T = 750 kNm is applied to the hollow...Ch. 3.10 - A 750-Nm torque is applied to a hollow shaft...Ch. 3.10 - 3.142 and 3.143 A hollow member having the cross...Ch. 3.10 - A hollow member having the cross section shown is...Ch. 3.10 - A 90-Nm torque is applied to a hollow shaft having...Ch. 3.10 - 3.145 and 3.146 A hollow member having the cross...Ch. 3.10 - 3.145 and 3.146 A hollow member having the cross...Ch. 3.10 - A cooling tube having the cross section shown is...Ch. 3.10 - A hollow cylindrical shaft was designed to have a...Ch. 3.10 - Equal torques are applied to thin-walled tubes of...Ch. 3.10 - A hollow cylindrical shaft of length L, mean...Ch. 3 - A steel pipe of 12-in. outer diameter is...Ch. 3 - A torque of magnitude T = 120 Nm is applied to...Ch. 3 - Fig. P3.152 3.153 Two solid shafts are connected...Ch. 3 - Prob. 154RPCh. 3 - Prob. 155RPCh. 3 - A torque of magnitude T = 4 kNm is applied at end...Ch. 3 - Ends A and D of the two solid steel shafts AB and...Ch. 3 - As the hollow steel shaft shown rotates at 180...Ch. 3 - Prob. 159RPCh. 3 - Prob. 160RPCh. 3 - Prob. 161RPCh. 3 - The shaft AB is made of a material that is...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Everything About COMBINED LOADING in 10 Minutes! Mechanics of Materials; Author: Less Boring Lectures;https://www.youtube.com/watch?v=N-PlI900hSg;License: Standard youtube license