Physics: Principles with Applications
Physics: Principles with Applications
6th Edition
ISBN: 9780130606204
Author: Douglas C. Giancoli
Publisher: Prentice Hall
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 4, Problem 51P
To determine

The time taken by the wet bar of soap to slide down a ramp and reach the bottom of the ramp.

Expert Solution & Answer
Check Mark

Answer to Problem 51P

Solution:

The bar of soap reaches the bottom of the ramp in 4.8 s.

Explanation of Solution

Given:

The length of the ramp s=9.0 m

The angle at which the ramp is inclined θ=8°

The coefficient of kinetic friction μk=0.060

Formula used:

The free body diagram of the soap sliding down the ramp is drawn as shown below.

  Physics: Principles with Applications, Chapter 4, Problem 51P

Figure-1

The weight mg of the bar of soap acts vertically downwards. The normal force FN acts perpendicular to the ramp. The weight mg is resolved into two components, mgsinθ and mgcosθ parallel and perpendicular to the ramp. Since, the bar of soap slides downwards, the force of friction Ffr acts upwards parallel to the ramp.

Since there is no motion perpendicular to the ramp,

  FN=mgcosθ   ......(1)

The force of kinetic friction is related to the normal force as,

  Ffr=μkFN    ......(2)

Since the bar of soap slides down the ramp, there is a net force F that acts downwards. This is given by,

  F=mgsinθFfr   ......(3)

Substitute equations (1) and (2) in (3).

  F=mgsinθμkmgcosθ=mg(sinθμkcosθ)   .......(4)

From Newton’s second law,

  F=ma

Here, a is the resultant acceleration of the soap bar down the ramp.

Therefore,

  ma=mg(sinθμkcosθ)a=g(sinθμkcosθ)   ......(5)

If the bar of soap slides down a distance s on the ramp in a time t , starting from rest, then

  s=12at2

Use the expression for acceleration from equation (5) and simplify for t .

  s=12at2=12[g(sinθ μ kcosθ)]t2t= 2s g( sinθ μ k cosθ )

Calculation:

Substitute the given values of s , θ , μk from the given values and 9.8 m/s2 for g and solve for t .

  t= 2s g( sinθ μ k cosθ )= 2( 9.0 m ) ( 9.8  m/s 2 )[ ( sin8° )( 0.060 )( cos8° )]=4.798 s

The time taken by the bar to reach the bottom of the ramp is 4.8 s.

Conclusion:

Using a free body diagram, the forces acting on the bar of soap is calculated. Whereas, using the equations of motion and Newton’s second law, the time taken to reach the bottom of the slope of length 9.0 m is calculated to be 4.8 s.

Chapter 4 Solutions

Physics: Principles with Applications

Ch. 4 - Prob. 11QCh. 4 - Prob. 12QCh. 4 - Prob. 13QCh. 4 - Prob. 14QCh. 4 - Prob. 15QCh. 4 - Prob. 16QCh. 4 - Prob. 17QCh. 4 - Prob. 18QCh. 4 - A block is given a brief push so that it slides up...Ch. 4 - Prob. 20QCh. 4 - Prob. 21QCh. 4 - What force is needed to accelerate a sled (mass =...Ch. 4 - Prob. 2PCh. 4 - How much tension must a rope withstand if it is...Ch. 4 - According to a simplified model of a mammalian...Ch. 4 - Superman must stop a 120-km/h train in 150 m to...Ch. 4 - A person has a reasonable chance of surviving an...Ch. 4 - What average force is required to stop a 950-kg...Ch. 4 - Prob. 8PCh. 4 - Prob. 9PCh. 4 - Prob. 10PCh. 4 - Prob. 11PCh. 4 - Prob. 12PCh. 4 - Prob. 13PCh. 4 - Prob. 14PCh. 4 - Prob. 15PCh. 4 - Prob. 16PCh. 4 - Prob. 17PCh. 4 - Prob. 18PCh. 4 - A box weighing 77.0 N rests on a table. A rope...Ch. 4 - Figure 4-46 Problem 21. 21. (I) Draw the free-body...Ch. 4 - Prob. 21PCh. 4 - Arlene is to walk across a “high wire" strung...Ch. 4 - A window washer pulls herself upward using the...Ch. 4 - One 3.2-kg paint bucket is hanging by a massless...Ch. 4 - Prob. 25PCh. 4 - A train locomotive is pulling two cars of the same...Ch. 4 - Prob. 27PCh. 4 - A 27-kg chandelier hangs from a ceiling on a...Ch. 4 - Prob. 29PCh. 4 - Figure 4-53 [shows a block (mass mA) on a smooth...Ch. 4 - Prob. 31PCh. 4 - Prob. 32PCh. 4 - 35. (Ill) Suppose the pulley in Fig. 4-55 is...Ch. 4 - Prob. 34PCh. 4 - A force of 35.0 N is required to start a 6.0-kg...Ch. 4 - Prob. 36PCh. 4 - Prob. 37PCh. 4 - Prob. 38PCh. 4 - Prob. 39PCh. 4 - A box is given a push so that it slides across the...Ch. 4 - Prob. 41PCh. 4 - Prob. 42PCh. 4 - Prob. 43PCh. 4 - 46. (II) For the system of Fig. 4-32 (Example...Ch. 4 - Prob. 45PCh. 4 - Prob. 46PCh. 4 - Prob. 47PCh. 4 - A person pushes a 14.0-kg lawn mower at constant...Ch. 4 - Prob. 49PCh. 4 - (a) A box sits at rest on a rough 33° inclined...Ch. 4 - Prob. 51PCh. 4 - Prob. 52PCh. 4 - Prob. 53PCh. 4 - A 25.0-kg box is released on a 27° incline and...Ch. 4 - Prob. 55PCh. 4 - Prob. 56PCh. 4 - The crate shown in Fig. 4-60 lies on a plane...Ch. 4 - A crate is given an initial speed of 3.0 m/s up...Ch. 4 - Prob. 59PCh. 4 - Prob. 60PCh. 4 - The coefficient of kinetic friction for a 22-kg...Ch. 4 - On an icy day, you worry about parking your car in...Ch. 4 - Two masses mA= 2.0 kg and mB= 5.0 kg are on...Ch. 4 - Prob. 64PCh. 4 - Prob. 65PCh. 4 - Prob. 66GPCh. 4 - Prob. 67GPCh. 4 - Prob. 68GPCh. 4 - Prob. 69GPCh. 4 - Prob. 70GPCh. 4 - Prob. 71GPCh. 4 - Prob. 72GPCh. 4 - Prob. 73GPCh. 4 - Prob. 74GPCh. 4 - Prob. 75GPCh. 4 - Prob. 76GPCh. 4 - Prob. 77GPCh. 4 - Prob. 78GPCh. 4 - Prob. 79GPCh. 4 - Prob. 80GPCh. 4 - Prob. 81GPCh. 4 - Prob. 82GPCh. 4 - Prob. 83GPCh. 4 - Prob. 84GPCh. 4 - Prob. 85GPCh. 4 - Prob. 86GPCh. 4 - Prob. 87GPCh. 4 - Prob. 88GPCh. 4 - Prob. 89GP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Position/Velocity/Acceleration Part 1: Definitions; Author: Professor Dave explains;https://www.youtube.com/watch?v=4dCrkp8qgLU;License: Standard YouTube License, CC-BY