Physics: Principles with Applications
Physics: Principles with Applications
6th Edition
ISBN: 9780130606204
Author: Douglas C. Giancoli
Publisher: Prentice Hall
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 4, Problem 76GP

(a)

To determine

The mass of the sand added to bucket.

(a)

Expert Solution
Check Mark

Answer to Problem 76GP

The mass of sand added to bucket is 11.25kg .

Explanation of Solution

Given:

The mass of the block is, mb=28kg .

The mass of the empty bucket is, me=1.35kg .

The coefficient of static friction between table and block is, μs=0.450 .

The coefficient of kinetic friction between table and block is, μk=0.320 .

Formula Used:

Draw the free body diagram of the system.

Physics: Principles with Applications, Chapter 4, Problem 76GP

Here, the force on the rope toward the block is F1 and F2 is the force acting in the downward.

The expression to calculate the mass of sand added to bucket is,

  F1=F2

  (m+me)g=μsmbg

  m+me=μsmb

  m=μsmbme

Where,

  g is the acceleration due to gravity.

  m is the mass sand added.

Calculation:

Substitute all the values in the above expression.

  m=(0.450)(28kg)(1.35kg)

  =11.25kg

Conclusion:

Thus, the mass of sand added to bucket is 11.25kg .

(b)

To determine

The acceleration of the system.

(b)

Expert Solution
Check Mark

Answer to Problem 76GP

The acceleration of the system is 0.31m/s2 .

Explanation of Solution

Given:

The mass of the block is, mb=28kg .

The mass of the empty bucket is, me=1.35kg .

The coefficient of static friction between table and block is, μs=0.450 .

The coefficient of kinetic friction between table and block is, μk=0.320 .

Formula Used:

The expression to calculate the acceleration of the system is,

  (mb+me)a=megμkmeg

  a=(meμkmemb+me)g

Where,

  a is the acceleration.

Calculation:

Substitute all the values in the above expression.

  a=(1.35kg(0.320)(1.35kg)28kg+1.35kg)(9.8m/s2)

  =0.31m/s2

Conclusion:

Thus, the acceleration of the system is 0.31m/s2 .

Chapter 4 Solutions

Physics: Principles with Applications

Ch. 4 - Prob. 11QCh. 4 - Prob. 12QCh. 4 - Prob. 13QCh. 4 - Prob. 14QCh. 4 - Prob. 15QCh. 4 - Prob. 16QCh. 4 - Prob. 17QCh. 4 - Prob. 18QCh. 4 - A block is given a brief push so that it slides up...Ch. 4 - Prob. 20QCh. 4 - Prob. 21QCh. 4 - What force is needed to accelerate a sled (mass =...Ch. 4 - Prob. 2PCh. 4 - How much tension must a rope withstand if it is...Ch. 4 - According to a simplified model of a mammalian...Ch. 4 - Superman must stop a 120-km/h train in 150 m to...Ch. 4 - A person has a reasonable chance of surviving an...Ch. 4 - What average force is required to stop a 950-kg...Ch. 4 - Prob. 8PCh. 4 - Prob. 9PCh. 4 - Prob. 10PCh. 4 - Prob. 11PCh. 4 - Prob. 12PCh. 4 - Prob. 13PCh. 4 - Prob. 14PCh. 4 - Prob. 15PCh. 4 - Prob. 16PCh. 4 - Prob. 17PCh. 4 - Prob. 18PCh. 4 - A box weighing 77.0 N rests on a table. A rope...Ch. 4 - Figure 4-46 Problem 21. 21. (I) Draw the free-body...Ch. 4 - Prob. 21PCh. 4 - Arlene is to walk across a “high wire" strung...Ch. 4 - A window washer pulls herself upward using the...Ch. 4 - One 3.2-kg paint bucket is hanging by a massless...Ch. 4 - Prob. 25PCh. 4 - A train locomotive is pulling two cars of the same...Ch. 4 - Prob. 27PCh. 4 - A 27-kg chandelier hangs from a ceiling on a...Ch. 4 - Prob. 29PCh. 4 - Figure 4-53 [shows a block (mass mA) on a smooth...Ch. 4 - Prob. 31PCh. 4 - Prob. 32PCh. 4 - 35. (Ill) Suppose the pulley in Fig. 4-55 is...Ch. 4 - Prob. 34PCh. 4 - A force of 35.0 N is required to start a 6.0-kg...Ch. 4 - Prob. 36PCh. 4 - Prob. 37PCh. 4 - Prob. 38PCh. 4 - Prob. 39PCh. 4 - A box is given a push so that it slides across the...Ch. 4 - Prob. 41PCh. 4 - Prob. 42PCh. 4 - Prob. 43PCh. 4 - 46. (II) For the system of Fig. 4-32 (Example...Ch. 4 - Prob. 45PCh. 4 - Prob. 46PCh. 4 - Prob. 47PCh. 4 - A person pushes a 14.0-kg lawn mower at constant...Ch. 4 - Prob. 49PCh. 4 - (a) A box sits at rest on a rough 33° inclined...Ch. 4 - Prob. 51PCh. 4 - Prob. 52PCh. 4 - Prob. 53PCh. 4 - A 25.0-kg box is released on a 27° incline and...Ch. 4 - Prob. 55PCh. 4 - Prob. 56PCh. 4 - The crate shown in Fig. 4-60 lies on a plane...Ch. 4 - A crate is given an initial speed of 3.0 m/s up...Ch. 4 - Prob. 59PCh. 4 - Prob. 60PCh. 4 - The coefficient of kinetic friction for a 22-kg...Ch. 4 - On an icy day, you worry about parking your car in...Ch. 4 - Two masses mA= 2.0 kg and mB= 5.0 kg are on...Ch. 4 - Prob. 64PCh. 4 - Prob. 65PCh. 4 - Prob. 66GPCh. 4 - Prob. 67GPCh. 4 - Prob. 68GPCh. 4 - Prob. 69GPCh. 4 - Prob. 70GPCh. 4 - Prob. 71GPCh. 4 - Prob. 72GPCh. 4 - Prob. 73GPCh. 4 - Prob. 74GPCh. 4 - Prob. 75GPCh. 4 - Prob. 76GPCh. 4 - Prob. 77GPCh. 4 - Prob. 78GPCh. 4 - Prob. 79GPCh. 4 - Prob. 80GPCh. 4 - Prob. 81GPCh. 4 - Prob. 82GPCh. 4 - Prob. 83GPCh. 4 - Prob. 84GPCh. 4 - Prob. 85GPCh. 4 - Prob. 86GPCh. 4 - Prob. 87GPCh. 4 - Prob. 88GPCh. 4 - Prob. 89GP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY