EBK MODERN PHYSICS
EBK MODERN PHYSICS
3rd Edition
ISBN: 8220100781971
Author: MOYER
Publisher: YUZU
bartleby

Concept explainers

Question
Book Icon
Chapter 5, Problem 14P

(a)

To determine

Show that the formula for low-energy electron diffraction (LEED), when electrons are incident perpendicular to a crystal surface, may be written as sinϕ=nhcd(2mec2K)1/2.

(a)

Expert Solution
Check Mark

Answer to Problem 14P

It is shown that the formula for low-energy electron diffraction (LEED), when electrons are incident perpendicular to a crystal surface, may be written as sinϕ=nhcd(2mec2K)1/2.

Explanation of Solution

Write the expression for the diffraction condition for a crystal.

    nλ=dsinϕ        (I)

Here, n is the order of diffraction, λ is the wavelength, d is the atomic spacing, ϕ is the angle of incidence.

Write the expression for λ.

    λ=hp        (II)

Here, h s the Planck’s constant, p is the linear momentum.

Write the expression for p.

    p=(2meK)1/2        (III)

Here, me is the mass of electron, K is the kinetic energy of the electron.

Use equation (III) in (II) to solve for λ.

    λ=h(2meK)1/2        (IV)

Use equation (IV) in (I) to solve for sinϕ.

    sinϕ=nd(h(2meK)1/2)=nhcd((2mec2K)1/2)        (V)

Conclusion:

Therefore, it is shown that the formula for low-energy electron diffraction (LEED), when electrons are incident perpendicular to a crystal surface, may be written as sinϕ=nhcd(2mec2K)1/2.

(b)

To determine

The atomic spacing in a crystal that has diffraction maxima at ϕ=24.1° and ϕ=54.9° for 100eV electrons.

(b)

Expert Solution
Check Mark

Answer to Problem 14P

The atomic spacing in a crystal that has diffraction maxima at ϕ=24.1° is 3.00×1010m_ and ϕ=54.9° is 3.00×1010m_ for 100eV electrons.

Explanation of Solution

Use equation (V) to solve for the atomic spacing for the crystal.

    dn=nhcsinϕ(2meK)1/2        (VI)

Conclusion:

Substitute 1 for n, 6.636×1034Js for h, 3×108m/s for c, 24.1° for ϕ, 9.1×1031kg for me, 100eV for K in equation (VI) to find d1.

    d1=(1)(6.636×1034Js×1eV1.6×1019J)(3×108m/s)sin24.1°[2((9.1×1031kg)(3×108m/s)2×1eV1.6×1019J)(100eV)]=3.00×1010m

Substitute 2 for n, 6.636×1034Js for h, 3×108m/s for c, 54.9° for ϕ, 9.1×1031kg for me, 100eV for K in equation (VI) to find d1.

    d1=(2)(6.636×1034Js×1eV1.6×1019J)(3×108m/s)sin54.9°[2((9.1×1031kg)(3×108m/s)2×1eV1.6×1019J)(100eV)]=3.00×1010m

The atomic spacing in both cases, 24.1° corresponds to n=1 and 54.9° to n=2.

Therefore, the atomic spacing in a crystal that has diffraction maxima at ϕ=24.1° is 3.00×1010m_ and ϕ=54.9° is 3.00×1010m_ for 100eV electrons.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Rayleigh’s criterion is used to determine when two objects are barely resolved by a lens of diameter d. The angular separation must be greater than θR where θR = 1.22 λ/d In order to resolve two objects 4000 nm apart at a distance of 20 cm with a lens of diameter 5 cm, what energy (a) photons or (b) electrons should be used? Is this consistent with the uncertainty principle?
Q. 1. An X-ray beam of wavelength 0.71 A is diffracted by a cubic KCL crystal of density 1.99x10^3 Kgm-3. Calculate the interplanner spacing for (200) planes and glancing angle for the second order reflection from these planes. The molecular weight of KCL is 74.6 amu and the Avagadro’s numberis 6.023x10^26 Kg-1 mole-1.
X-rays with wavelengths of 128 pm was used to study a crystal which produced a reflection of 15.8 degrees. Assuming first order diffraction (n = 1), what is the distance between the planes of atoms (d)?
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Modern Physics
    Physics
    ISBN:9781111794378
    Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
    Publisher:Cengage Learning
    Text book image
    University Physics Volume 3
    Physics
    ISBN:9781938168185
    Author:William Moebs, Jeff Sanny
    Publisher:OpenStax
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax