Heating, Ventilation, and Air Conditioning: Analysis and Design
Heating, Ventilation, and Air Conditioning: Analysis and Design
6th Edition
ISBN: 9781119628798
Author: Faye C. McQuiston; Jerald D. Parker; Jeffrey D. Spitler
Publisher: Wiley Global Education US
bartleby

Videos

Textbook Question
Book Icon
Chapter 5, Problem 5.17P

Estimate the heat-transfer rate per square foot through a flat, built-up roof—ceiling combination similar to that shown in Table 5-4b, construction 2. The ceiling is 3 4 in. acoustical tile with 4in. fibrous glass batts above. Indoor and outdoor temperatures are 72 F and 5 F, respectively.

Blurred answer
Students have asked these similar questions
Q2- Water flows inside a steel pipe with an ID of 2.5 cm. The wall thickness is 2 mm, and the convection coefficient on the inside is 100 Wm? C. The convection coefficient on the outside is 10 W/n C. The pipe is covered with a layer of asbestos. 1-determine the thickness of the asbestos layer at the critical insulation radius of the pipe. 2-calculate the change percent of heat transfer with and without the insulation. 3-commet on your results,
The schematic below illustrates a tank formed from two zones, i.e. liquid and solid. The tank is heated from the left-side with a time-varying solar heat radiation g,ol =f(t) (Wim), while the right-side is kept at a low temperature T. The top surface of the tank is subjected to the ambient conditions, i.e. (hair & Tair ), while its bottom is thermally insulated. Conjugate heat transfer takes place between the two-physically different zones through the fluid-solid interface separating them, while fluid flow is induced due to buoyancy effects where the buoyancy force is approximated according to Boussinesq formulation Fiuoyaney=P0 Bg(T-To). Explain the following: 1- The assumptions required to simulate the below problem. 2- The conservation equations governing the transport phenomena in each zone. 3- The boundary conditions closing the mathematical model. 4- The discretized form of each conservation equation stated in (point 2) above. 5- The appropriate differencing scheme to be used for…
2. In determining the thermal conductivity of a plateflat insulator, the temperature was measured on both sides of the 25 mm thick plate and gave the results of 318.4 K and 303.2 K. FluxThe measured heat is 35.1 W.m-2. Illustrate the problem in a simple schematic/drawing, then calculate the thermal conductivity inbtu/h.ft.oF and in W/m.K! (0.033 ; 0.058) 3. A coil-shaped cooling pipe is made of SS-304 material. This pipe is 1 ft long, 0.4 inch outside diameter, and inch inside diameter. This coil cooling pipe is used to cool the water in the bath. The temperature of the inner coil pipe is 40oF while the outer coil in contact with water is 80oF. The thermal conductivity of SS-304 is a function of temperature where k(T) = 7.75 + (7.78 x 10-3).T where k is in Btu/h.ft.oF and T is in oF. Calculate the rate of heat dissipation in watts! (1287.7)

Chapter 5 Solutions

Heating, Ventilation, and Air Conditioning: Analysis and Design

Ch. 5 - Estimate what fraction of the heat transfer for a...Ch. 5 - Make a table similar to Table 5-4a showing...Ch. 5 - Estimate the unit thermal resistance for a...Ch. 5 - Refer to Problem 5-13, and estimate the unit...Ch. 5 - A ceiling space is formed by a large flat roof and...Ch. 5 - A wall is 20 ft (6.1 m) wide and 8 ft (2.4 m) high...Ch. 5 - Estimate the heat-transfer rate per square foot...Ch. 5 - A wall exactly like the one described in Table...Ch. 5 - Prob. 5.19PCh. 5 - Compute the overall heat-transfer coefficient for...Ch. 5 - Compute the overall heat transfer for a single...Ch. 5 - Determine the overall heattransfer coefficient for...Ch. 5 - A basement is 2020ft(66m) and 7 ft (2.13 m) below...Ch. 5 - Estimate the overall heat-transfer coefficient for...Ch. 5 - Rework Problem 5-23 assuming that the walls are...Ch. 5 - A heated building is built on a concrete slab with...Ch. 5 - A basement wall extends 6 ft (1.8 m) below grade...Ch. 5 - A 2440ft(7.312.2m) building has a full basement...Ch. 5 - The floor of the basement described in Problem...Ch. 5 - Assume that the ground temperature tg is 40 F (10...Ch. 5 - Use the temperatures given in Problem 5-30 and...Ch. 5 - A small office building is constructed with a...Ch. 5 - A 100 ft length of buried, uninsulated steel pipe...Ch. 5 - Estimate the heat loss from 100 m of buried...Ch. 5 - A large beverage cooler resembles a small building...Ch. 5 - Consider the wall section shown in Fig. 5-10. (a)...Ch. 5 - A building has floor plan dimensions of 3060ft....Ch. 5 - Compute the temperature of the metal roof deck of...Ch. 5 - Consider the wall section shown in Fig. -4a,...Ch. 5 - Consider the knee space shown in Fig. 5-11. The...Ch. 5 - Estimate the temperature in an unheated basement...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license