Tutorials in Introductory Physics
Tutorials in Introductory Physics
1st Edition
ISBN: 9780130970695
Author: Peter S. Shaffer, Lillian C. McDermott
Publisher: Addison Wesley
bartleby

Concept explainers

bartleby

Videos

Textbook Question
100%
Book Icon
Chapter 5.3, Problem 1bT

In the following Questions, a Gaussian cylinder with radius a andl is placed in various electric fields. The end caps are labeled A and C and the side surfaces is labeled B. In each case, base your answer about the net flux only on qualitative arguments about the magnitude of the flux through the end caps and side surfaces.

Chapter 5.3, Problem 1bT, In the following Questions, a Gaussian cylinder with radius a andl is placed in various electric

B. The Gaussian cylinder encloses a negative charge. (The field from part A is removed.)

• find the sign of the flux through:
Surface A:  Surface B:  Surface C:

• Is the net flux through the Gaussian surface positive, negative, or zero?

Blurred answer
Students have asked these similar questions
Problem 2:   A closed hollow cylinder (i.e., with capped ends) is situated in an electric field given by E(u) = E0(u5i + 7j + 22k). The cylinder’s axis is on the x-axis with its center at the origin. The cylinder’s height is L and its radius is R. Here u = x/x0 is a dimensionless variable, where x0 sets the scale of the field. Refer to the figure. Part (a)  Integrate to find an expression for the total electric flux through the cylinder in terms of defined quantities and enter the expression.  Part (b)  For L = 8.7 m, R = 0.25 m, E0 = 4.5 V/m, and x0 = 1 m, find the value of the electric flux, in units of volt•meter, through the cylinder.  Part (c) If the electric field is E(u) = E0(323u2i + 42j + 415k), enter an expression for the total flux in terms of defined quantities.
Consider a right triangle ABC with the right triangle at vertex B. The charges at A, at B, and at C, are known to be 5 mC, 4 mC, and 7 mC, respectively. Given that the side AB is numerically equal to 94 meters, and AC is thrice AB, find the magnitudes of the force and of the electric field at B.
Consider a very thin semi-circle of charge as shown, with radius of R. Explain with words and equations how you would derive the electric field vector measured at the center of this line of charge curved into a semi-circle with radius R (Measure E at the origin).

Chapter 5 Solutions

Tutorials in Introductory Physics

Ch. 5.1 - Imagine that two charged rods are held together as...Ch. 5.1 - Five short segments (labeled 1-5) of acrylic rod...Ch. 5.1 - In case A at right, a point Charge +q is a...Ch. 5.1 - A small ball with zero net charge is positively...Ch. 5.1 - Hang an uncharged metal or metal-covered ball from...Ch. 5.1 - The situation in part A suggests a way to think...Ch. 5.2 - Hold a small piece of paper (e.g., an index card)...Ch. 5.2 - The area of a flat surface can be represented by a...Ch. 5.2 - Place a large piece of graph paper flat on the...Ch. 5.2 - Fold the graph paper twice so that it forms a...Ch. 5.2 - Form the graph paper into a tube as shown. Can the...Ch. 5.2 - What must be true about a surface or a portion of...Ch. 5.2 - In the tutorial Charge, you explored the region...Ch. 5.2 - Suppose that the charge, qtest , on the pith ball...Ch. 5.2 - The quantity F/qtest evaluated at any point is...Ch. 5.2 - Sketch vectors at each of the marked points to...Ch. 5.2 - The diagram at right shows a two-dimensional top...Ch. 5.2 - Compare the magnitude of the electric field at...Ch. 5.2 - Obtain a wire loop. The Loop represents the...Ch. 5.2 - For a given surface, the electric flux, E , is...Ch. 5.2 - You will now examine the relationship between the...Ch. 5.2 - When EandA were parallel, we called the quantity...Ch. 5.3 - In the following Questions, a Gaussian cylinder...Ch. 5.3 - In the following Questions, a Gaussian cylinder...Ch. 5.3 - In the following Questions, a Gaussian cylinder...Ch. 5.3 - In the following Questions, a Gaussian cylinder...Ch. 5.3 - Are your answer to part A-C of section I...Ch. 5.3 - In part D of section I, you tried to determine the...Ch. 5.3 - Find the net flux through each of the Gaussian...Ch. 5.3 - The three spherical Gaussian surfaces at right...Ch. 5.3 - A large sheet has charge density +o . A...Ch. 5.3 - The Gaussian cylinder below encloses a portion of...Ch. 5.4 - Suppose an object moves under the influence of a...Ch. 5.4 - An object travels from point A to point B while...Ch. 5.4 - An object travels from point A to point B while...Ch. 5.4 - State the work-energy theorem in your own words....Ch. 5.4 - Draw electric field vectors at point W, X, Y, and...Ch. 5.4 - A particle with charge +qo , travels along a...Ch. 5.4 - The particle travels from point X to point Z along...Ch. 5.4 - Suppose the particle travels from point W to point...Ch. 5.4 - Compare the work done as the particle travels from...Ch. 5.4 - Suppose the charge of the particle in section II...Ch. 5.4 - Shown at right are four Points near a positively...Ch. 5.5 - A small portion near the center of a large thin...Ch. 5.5 - Use the principle of superposition to determine...Ch. 5.5 - Use the principle of superposition to determine...Ch. 5.5 - Consider instead a portion near the center of a...Ch. 5.5 - A second plate with the same magnitude charge as...Ch. 5.5 - The inner surface of one plate has a uniform...Ch. 5.5 - B. Suppose the plates are discharged, then held a...Ch. 5.5 - Compare the ratio QV that you calculated for two...Ch. 5.5 - For the following cases, state whether each of the...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY